Zn-doped Co3O4 nanoparticles: promising room temperature sensor materials for efficient triethylamine (TEA) detection

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Bulletin Pub Date : 2024-11-18 DOI:10.1016/j.materresbull.2024.113201
Amensisa Negasa Begi , Shahid Hussain , Jesse Nii Okai Amu-Darko , Tahani Mazyad Almutairi , Muhammad Javed Liaqat , Amjad Iqbal , Rajesh Kumar Manavalan , Xiangzhao Zhang , Guanjun Qiao , Guiwu Liu
{"title":"Zn-doped Co3O4 nanoparticles: promising room temperature sensor materials for efficient triethylamine (TEA) detection","authors":"Amensisa Negasa Begi ,&nbsp;Shahid Hussain ,&nbsp;Jesse Nii Okai Amu-Darko ,&nbsp;Tahani Mazyad Almutairi ,&nbsp;Muhammad Javed Liaqat ,&nbsp;Amjad Iqbal ,&nbsp;Rajesh Kumar Manavalan ,&nbsp;Xiangzhao Zhang ,&nbsp;Guanjun Qiao ,&nbsp;Guiwu Liu","doi":"10.1016/j.materresbull.2024.113201","DOIUrl":null,"url":null,"abstract":"<div><div>A remarkable Zn-doped Co<sub>3</sub>O<sub>4</sub> nanoparticle material exhibiting exceptional potential as a triethylamine (TEA) sensor was presented. Zn-doped Co<sub>3</sub>O<sub>4</sub> nanoparticles were synthesized using a facile solvothermal method with varying concentrations of zinc dopant. The effects of Zn doping on the sensor triethylamine detection capabilities were investigated, revealing a notable enhancement in sensitivity and selectivity with a response of 2.04 at 25 °C. Furthermore, the calculated response and recovery times at the optimum temperature were 7.5 s and 27.8 s, respectively, making it an energy-efficient and quicker alternative to conventional sensors. This improvement in the sensing performance can be attributed to the optimized electronic structure and chemical properties achieved through Zn doping, which promoted the formation of abundant oxygen vacancies and improved the number of adsorption sites. These findings demonstrate that Zn-doped Co<sub>3</sub>O<sub>4</sub> nanoparticles are promising sensor materials for efficient TEA detection, with potential applications in various industries.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"183 ","pages":"Article 113201"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824005312","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A remarkable Zn-doped Co3O4 nanoparticle material exhibiting exceptional potential as a triethylamine (TEA) sensor was presented. Zn-doped Co3O4 nanoparticles were synthesized using a facile solvothermal method with varying concentrations of zinc dopant. The effects of Zn doping on the sensor triethylamine detection capabilities were investigated, revealing a notable enhancement in sensitivity and selectivity with a response of 2.04 at 25 °C. Furthermore, the calculated response and recovery times at the optimum temperature were 7.5 s and 27.8 s, respectively, making it an energy-efficient and quicker alternative to conventional sensors. This improvement in the sensing performance can be attributed to the optimized electronic structure and chemical properties achieved through Zn doping, which promoted the formation of abundant oxygen vacancies and improved the number of adsorption sites. These findings demonstrate that Zn-doped Co3O4 nanoparticles are promising sensor materials for efficient TEA detection, with potential applications in various industries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺锌 Co3O4 纳米粒子:有望用于高效检测三乙胺 (TEA) 的室温传感器材料
本研究提出了一种掺锌 Co3O4 纳米粒子材料,该材料作为三乙胺(TEA)传感器具有非凡的潜力。掺杂锌的 Co3O4 纳米粒子是用不同浓度的锌掺杂剂通过简便的溶热法合成的。研究了掺锌对传感器三乙胺检测能力的影响,结果表明该传感器的灵敏度和选择性显著提高,25 °C时的响应为2.04。此外,在最佳温度下,计算得出的响应时间和恢复时间分别为 7.5 秒和 27.8 秒,从而使其成为传统传感器的节能和快速替代品。传感性能的提高可归因于通过掺杂锌优化了电子结构和化学性质,促进了大量氧空位的形成并增加了吸附位点的数量。这些研究结果表明,掺杂 Zn 的 Co3O4 纳米粒子是高效检测三乙醇胺的理想传感材料,有望应用于各行各业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
期刊最新文献
Fabrication of Dy:GdVO4 single crystals and evaluation of scintillation performance Engineering novel MnxCd1-xS self-assembled p-n junction modified with NiS for enhanced photocatalytic hydrogen evolution Magnetic behavior of nanofilms prepared by assembling different Co ferrite nanoparticles Catalytic degradation of tetracycline antibiotics by copper-based containing organic ligands Enhanced photocatalytic performance of SnS2/ZnO Z-scheme composite photocatalysts for efficient environmental remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1