Integration of Cu2O-NiTiO3 as an efficient p-n heterojunction visible light photocatalytic system for the simultaneous removal of Cr (VI) and Alizarine Cyanine Green dye
Thirumalai Lakshmi , A. Mohammed Basheer Ali , Noor Danish Ahrar Mundari , T. Mishra , Noor Aman
{"title":"Integration of Cu2O-NiTiO3 as an efficient p-n heterojunction visible light photocatalytic system for the simultaneous removal of Cr (VI) and Alizarine Cyanine Green dye","authors":"Thirumalai Lakshmi , A. Mohammed Basheer Ali , Noor Danish Ahrar Mundari , T. Mishra , Noor Aman","doi":"10.1016/j.materresbull.2024.113213","DOIUrl":null,"url":null,"abstract":"<div><div>Cu<sub>2</sub>O loaded NiTiO<sub>3</sub> based p-n heterojunction photocatalysts of various proportions have been synthesized by liquid phase reduction process resulting in NiTiO<sub>3</sub> nanoparticles dispersed on the surface of Cu<sub>2</sub>O. Formation of both oxide phases is confirmed from the XRD, HR-SEM and XPS analysis. Heterojunction formation is confirmed by the intimate contact between NiTiO<sub>3</sub> and Cu<sub>2</sub>O as evidenced by HR-TEM. UV-Vis spectra exhibit a red shift indicating the extended visible light absorption. XPS shows the presence of oxidation states of Ni<sup>2+</sup>, Ti<sup>4+</sup>, Cu<sup>+</sup>, Cu<sup>2+</sup> and O<sup>2-</sup>. Heterojunction materials showed enhanced activity for the simultaneous photocatalytic reduction of Cr (VI) and degradation of Alizarine Cyanine Green dye under visible light irradiation. 1:2 ratio of Cu<sub>2</sub>O and NiTiO<sub>3</sub> heterojunction (1C:2N) material exhibits 100% dye degradation in 90 minutes and Cr (VI) reduction in 180 minutes. Higher activity of Cu<sub>2</sub>O-NiTiO<sub>3</sub> p-n heterojunction is ascribed to the effective charge separation and extended visible light absorption</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"183 ","pages":"Article 113213"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824005439","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cu2O loaded NiTiO3 based p-n heterojunction photocatalysts of various proportions have been synthesized by liquid phase reduction process resulting in NiTiO3 nanoparticles dispersed on the surface of Cu2O. Formation of both oxide phases is confirmed from the XRD, HR-SEM and XPS analysis. Heterojunction formation is confirmed by the intimate contact between NiTiO3 and Cu2O as evidenced by HR-TEM. UV-Vis spectra exhibit a red shift indicating the extended visible light absorption. XPS shows the presence of oxidation states of Ni2+, Ti4+, Cu+, Cu2+ and O2-. Heterojunction materials showed enhanced activity for the simultaneous photocatalytic reduction of Cr (VI) and degradation of Alizarine Cyanine Green dye under visible light irradiation. 1:2 ratio of Cu2O and NiTiO3 heterojunction (1C:2N) material exhibits 100% dye degradation in 90 minutes and Cr (VI) reduction in 180 minutes. Higher activity of Cu2O-NiTiO3 p-n heterojunction is ascribed to the effective charge separation and extended visible light absorption
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.