{"title":"High-performance PVdF-HFP/PEG-IL composites: The combined effects of PEG and ionic liquid on proton conductivity and dielectric characteristics","authors":"Mesut Yılmazoğlu , Hikmet Okkay , Ufuk Abaci , Ozan Coban","doi":"10.1016/j.coco.2024.102175","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the influence of varying polyethylene glycol (PEG) concentrations on the properties of PVdF-HFP/PEG-IL polymer composites through comprehensive characterization techniques, including FTIR, SEM, TGA, DMA, XRD and the detailed assessments of proton conductivity, dielectric properties, and relaxation dynamics. In terms of conductivity, the addition of PEG markedly improves proton conductivity. The PVdF-HFP/PEG40-IL composite exhibits the highest conductivity, reaching 1.96 × 10⁻<sup>2</sup> S/m at 1 MHz and 300 K, and increasing to 4.27 × 10⁻<sup>2</sup> S/m at 420 K. Dielectric properties show that the dielectric constant (ε′) increases with PEG content at low frequencies but decreases at higher frequencies due to reduced ionic polarization. Notably, PVdF-HFP/PEG40-IL achieves a dielectric constant of 3.39 × 10<sup>6</sup> at 20 Hz, which decreases to 30.34 at 1 MHz. Dielectric loss (ε'') also rises with temperature, with PVdF-HFP/PEG40-IL demonstrating the highest dielectric loss, indicative of superior proton conduction and polarization capabilities. Relaxation dynamics, as evidenced by tanδ, reveal that relaxation time significantly decreases with both increased PEG content and temperature, dropping from 1.06 × 10⁻<sup>4</sup> s to 2 × 10⁻<sup>6</sup> s as PEG concentration increases from 10 % to 40 %. This reduction in relaxation time correlates with enhanced proton conductivity and faster dipole relaxation, indicating PEG effect as a plasticizer that reduces polymer viscosity and improves ion transport. In conclusion, incorporating PEG into PVdF-HFP-IL composites leads to substantial improvements in proton conductivity, dielectric properties, and relaxation dynamics. The results highlight the crucial role of PEG in optimizing the performance of polymer electrolyte composites, making them effective candidates for advanced energy storage and conversion applications.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"53 ","pages":"Article 102175"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924003668","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the influence of varying polyethylene glycol (PEG) concentrations on the properties of PVdF-HFP/PEG-IL polymer composites through comprehensive characterization techniques, including FTIR, SEM, TGA, DMA, XRD and the detailed assessments of proton conductivity, dielectric properties, and relaxation dynamics. In terms of conductivity, the addition of PEG markedly improves proton conductivity. The PVdF-HFP/PEG40-IL composite exhibits the highest conductivity, reaching 1.96 × 10⁻2 S/m at 1 MHz and 300 K, and increasing to 4.27 × 10⁻2 S/m at 420 K. Dielectric properties show that the dielectric constant (ε′) increases with PEG content at low frequencies but decreases at higher frequencies due to reduced ionic polarization. Notably, PVdF-HFP/PEG40-IL achieves a dielectric constant of 3.39 × 106 at 20 Hz, which decreases to 30.34 at 1 MHz. Dielectric loss (ε'') also rises with temperature, with PVdF-HFP/PEG40-IL demonstrating the highest dielectric loss, indicative of superior proton conduction and polarization capabilities. Relaxation dynamics, as evidenced by tanδ, reveal that relaxation time significantly decreases with both increased PEG content and temperature, dropping from 1.06 × 10⁻4 s to 2 × 10⁻6 s as PEG concentration increases from 10 % to 40 %. This reduction in relaxation time correlates with enhanced proton conductivity and faster dipole relaxation, indicating PEG effect as a plasticizer that reduces polymer viscosity and improves ion transport. In conclusion, incorporating PEG into PVdF-HFP-IL composites leads to substantial improvements in proton conductivity, dielectric properties, and relaxation dynamics. The results highlight the crucial role of PEG in optimizing the performance of polymer electrolyte composites, making them effective candidates for advanced energy storage and conversion applications.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.