Gregor Ortner , Adrien Michel , Matthias B.A. Spieler , Marc Christen , Yves Bühler , Michael Bründl , David N. Bresch
{"title":"A novel approach for bridging the gap between climate change scenarios and avalanche hazard indication mapping","authors":"Gregor Ortner , Adrien Michel , Matthias B.A. Spieler , Marc Christen , Yves Bühler , Michael Bründl , David N. Bresch","doi":"10.1016/j.coldregions.2024.104355","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of climate change on snow avalanches, particularly for the end of this century, remains uncertain, underscoring the need for further research. To assess the possible consequences of potential changes in snow accumulation and temperature and their impact on avalanche hazard, we introduce a comprehensive multi-step framework. It includes the analysis of climate change scenarios as well as the modeling of future snow covers and the simulation of avalanches in a case study region in central Switzerland.</div><div>Using a downscaling and a quantile mapping approach, we considered the high emission RCP8.5 from the CH2018 Swiss climate change scenarios and simulated a potential snow cover of more than 100 future winters with the snow cover model SNOWPACK. Changing snow accumulation and snow cover temperature was taken into account for two future time frames. The changed parameters were used in the RAMMS::EXTENDED avalanche simulation software on large scale.</div><div>The results indicate that changes in snow accumulation and temperature have a considerable impact on the run-out of avalanches. The results strongly depend on the climate model, without a clear overall trend in snow accumulation across the selected model chains. Snow accumulation and layer temperature can increase or decrease. However, for snow cover temperature, an increase in the mean snow temperature, especially towards the end of the century, can be expected. In future scenarios with reduced snow accumulation and rising temperatures, avalanche simulations show a decrease in the affected area.</div><div>The workflow from climate scenario analysis to avalanche hazard modeling serves as an initial method for estimating future avalanche extents in the context of climate change on a large scale and can be useful for achieving future protection and adaptation goals.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"230 ","pages":"Article 104355"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002362","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of climate change on snow avalanches, particularly for the end of this century, remains uncertain, underscoring the need for further research. To assess the possible consequences of potential changes in snow accumulation and temperature and their impact on avalanche hazard, we introduce a comprehensive multi-step framework. It includes the analysis of climate change scenarios as well as the modeling of future snow covers and the simulation of avalanches in a case study region in central Switzerland.
Using a downscaling and a quantile mapping approach, we considered the high emission RCP8.5 from the CH2018 Swiss climate change scenarios and simulated a potential snow cover of more than 100 future winters with the snow cover model SNOWPACK. Changing snow accumulation and snow cover temperature was taken into account for two future time frames. The changed parameters were used in the RAMMS::EXTENDED avalanche simulation software on large scale.
The results indicate that changes in snow accumulation and temperature have a considerable impact on the run-out of avalanches. The results strongly depend on the climate model, without a clear overall trend in snow accumulation across the selected model chains. Snow accumulation and layer temperature can increase or decrease. However, for snow cover temperature, an increase in the mean snow temperature, especially towards the end of the century, can be expected. In future scenarios with reduced snow accumulation and rising temperatures, avalanche simulations show a decrease in the affected area.
The workflow from climate scenario analysis to avalanche hazard modeling serves as an initial method for estimating future avalanche extents in the context of climate change on a large scale and can be useful for achieving future protection and adaptation goals.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.