Preparation and characterization of modified steel slag-based composite phase change materials

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Heat and Fluid Flow Pub Date : 2024-11-23 DOI:10.1016/j.ijheatfluidflow.2024.109666
Chenhao Yang , Zekai Zhang , Haowen Yu , Nian Xu , Zucun Rui , Huaqiang Chu
{"title":"Preparation and characterization of modified steel slag-based composite phase change materials","authors":"Chenhao Yang ,&nbsp;Zekai Zhang ,&nbsp;Haowen Yu ,&nbsp;Nian Xu ,&nbsp;Zucun Rui ,&nbsp;Huaqiang Chu","doi":"10.1016/j.ijheatfluidflow.2024.109666","DOIUrl":null,"url":null,"abstract":"<div><div>In order to promote the resource utilization in steel slag and reduce the environmental hazards caused by steel slag, a steel slag-based composite phase change material was prepared in this experiment. Steel slag had a porous structure with good structural stability, which could be used to prepare composite phase change materials and applied in fields such as thermal energy storage and waste heat recovery. To enhance the adsorption capacity of steel slag on phase change materials, the impact of acid or alkali modifiers on steel slag was meticulously examined. The investigation revealed that the pore structure of the modified steel slag was markedly enhanced, accompanied by a notable improvement in adsorption capacity. Among the results, the adsorption rate of the acid washed modified steel slag for paraffin reached 35 %, with the phase change temperature and latent heat of phase change being 53 °C and 60 J/g. Acid washing had a significant impact on the pore structure of the steel slag, with the adsorption rate of the acid washed modified steel slag for paraffin being approximately twice that of the unmodified steel slag.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"111 ","pages":"Article 109666"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24003916","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to promote the resource utilization in steel slag and reduce the environmental hazards caused by steel slag, a steel slag-based composite phase change material was prepared in this experiment. Steel slag had a porous structure with good structural stability, which could be used to prepare composite phase change materials and applied in fields such as thermal energy storage and waste heat recovery. To enhance the adsorption capacity of steel slag on phase change materials, the impact of acid or alkali modifiers on steel slag was meticulously examined. The investigation revealed that the pore structure of the modified steel slag was markedly enhanced, accompanied by a notable improvement in adsorption capacity. Among the results, the adsorption rate of the acid washed modified steel slag for paraffin reached 35 %, with the phase change temperature and latent heat of phase change being 53 °C and 60 J/g. Acid washing had a significant impact on the pore structure of the steel slag, with the adsorption rate of the acid washed modified steel slag for paraffin being approximately twice that of the unmodified steel slag.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改性钢渣基复合相变材料的制备与表征
为了促进钢渣的资源化利用,减少钢渣对环境造成的危害,本实验制备了一种基于钢渣的复合相变材料。钢渣具有多孔结构,结构稳定性好,可用于制备复合相变材料,并应用于热能储存和余热回收等领域。为了提高钢渣对相变材料的吸附能力,实验细致研究了酸碱改性剂对钢渣的影响。研究发现,改性钢渣的孔隙结构明显改善,同时吸附能力也显著提高。其中,酸洗改性钢渣对石蜡的吸附率达到 35%,相变温度和相变潜热分别为 53 °C 和 60 J/g。酸洗对钢渣的孔隙结构有显著影响,酸洗改性钢渣对石蜡的吸附率约为未改性钢渣的两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
期刊最新文献
Viscosity-driven clustering of heated polydispersed particles in subsonic jet flows Control of flow separation from an axisymmetric body using tangentially steady bowing jets Theoretical and numerical studies of heat and humidity transfer in underground ventilation corridor Quasi-one-dimensional mathematical model of the two-dimensional supersonic cavity mean flow Numerical simulation of fractional order double diffusive convective nanofluid flow in a wavy porous enclosure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1