Physics-informed neural networks for dynamic process operations with limited physical knowledge and data

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-10-30 DOI:10.1016/j.compchemeng.2024.108899
Mehmet Velioglu , Song Zhai , Sophia Rupprecht , Alexander Mitsos , Andreas Jupke , Manuel Dahmen
{"title":"Physics-informed neural networks for dynamic process operations with limited physical knowledge and data","authors":"Mehmet Velioglu ,&nbsp;Song Zhai ,&nbsp;Sophia Rupprecht ,&nbsp;Alexander Mitsos ,&nbsp;Andreas Jupke ,&nbsp;Manuel Dahmen","doi":"10.1016/j.compchemeng.2024.108899","DOIUrl":null,"url":null,"abstract":"<div><div>In chemical engineering, process data are expensive to acquire, and complex phenomena are difficult to fully model. We explore the use of physics-informed neural networks (PINNs) for modeling dynamic processes with incomplete mechanistic semi-explicit differential–algebraic equation systems and scarce process data. In particular, we focus on estimating states for which neither direct observational data nor constitutive equations are available. We propose an easy-to-apply heuristic to assess whether estimation of such states may be possible. As numerical examples, we consider a continuously stirred tank reactor and a liquid–liquid separator. We find that PINNs can infer immeasurable states with reasonable accuracy, even if respective constitutive equations are unknown. We thus show that PINNs are capable of modeling processes when relatively few experimental data and only partially known mechanistic descriptions are available, and conclude that they constitute a promising avenue that warrants further investigation.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108899"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009813542400317X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In chemical engineering, process data are expensive to acquire, and complex phenomena are difficult to fully model. We explore the use of physics-informed neural networks (PINNs) for modeling dynamic processes with incomplete mechanistic semi-explicit differential–algebraic equation systems and scarce process data. In particular, we focus on estimating states for which neither direct observational data nor constitutive equations are available. We propose an easy-to-apply heuristic to assess whether estimation of such states may be possible. As numerical examples, we consider a continuously stirred tank reactor and a liquid–liquid separator. We find that PINNs can infer immeasurable states with reasonable accuracy, even if respective constitutive equations are unknown. We thus show that PINNs are capable of modeling processes when relatively few experimental data and only partially known mechanistic descriptions are available, and conclude that they constitute a promising avenue that warrants further investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对物理知识和数据有限的动态工艺操作的物理信息神经网络
在化学工程领域,过程数据的获取成本高昂,而复杂的现象难以完全建模。我们探讨了如何利用物理信息神经网络(PINNs)为不完整的机械半显式微分代数方程系统和稀缺的过程数据建立动态过程模型。特别是,我们将重点放在估计既没有直接观测数据也没有构成方程的状态上。我们提出了一种易于应用的启发式方法,用于评估是否可以对此类状态进行估计。作为数值示例,我们考虑了一个连续搅拌罐反应器和一个液液分离器。我们发现,即使各自的构成方程未知,PINN 也能以合理的精度推断出不可测量的状态。因此,我们证明了 PINNs 能够在实验数据相对较少且仅有部分已知机理描述的情况下对过程进行建模,并得出结论:PINNs 是一个值得进一步研究的前景广阔的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Editorial Board ChemBERTa embeddings and ensemble learning for prediction of density and melting point of deep eutectic solvents with hybrid features CPU and GPU based acceleration of high-dimensional population balance models via the vectorization and parallelization of multivariate aggregation and breakage integral terms Piecewise linear approximation using J1 compatible triangulations for efficient MILP representation Stochastic algorithm-based optimization using artificial intelligence/machine learning models for sorption enhanced steam methane reformer reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1