Sumit K. Bishnu , Sabla Y. Alnouri , Dhabia M. Al Mohannadi
{"title":"Stochastic algorithm-based optimization using artificial intelligence/machine learning models for sorption enhanced steam methane reformer reactor","authors":"Sumit K. Bishnu , Sabla Y. Alnouri , Dhabia M. Al Mohannadi","doi":"10.1016/j.compchemeng.2025.109060","DOIUrl":null,"url":null,"abstract":"<div><div>There is a need for comprehensive tools that combine data-driven modeling with optimization techniques. In this work, a robust Random Forest Regression (RFR) model was developed to capture the behavior and characteristics of a Sorption Enhanced Steam Methane Reformer (SE-SMR) Reactor system. This model was then integrated into a Simulated Annealing (SA) optimization framework that helped identify the optimal operating conditions for the unit. The combined approach demonstrates the potential of using machine learning models in conjunction with optimization techniques to improve the solving process. The proposed methodology achieved an optimal methane conversion rate of 0.99979, and was successful in effectively identifying the optimal operating conditions that were required for near-complete conversion.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"196 ","pages":"Article 109060"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009813542500064X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
There is a need for comprehensive tools that combine data-driven modeling with optimization techniques. In this work, a robust Random Forest Regression (RFR) model was developed to capture the behavior and characteristics of a Sorption Enhanced Steam Methane Reformer (SE-SMR) Reactor system. This model was then integrated into a Simulated Annealing (SA) optimization framework that helped identify the optimal operating conditions for the unit. The combined approach demonstrates the potential of using machine learning models in conjunction with optimization techniques to improve the solving process. The proposed methodology achieved an optimal methane conversion rate of 0.99979, and was successful in effectively identifying the optimal operating conditions that were required for near-complete conversion.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.