{"title":"Generalized Bell polynomials","authors":"Antonio J. Durán","doi":"10.1016/j.jat.2024.106121","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, generalized Bell polynomials <span><math><msub><mrow><mrow><mo>(</mo><msubsup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>ϕ</mi></mrow></msubsup><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> associated to a sequence of real numbers <span><math><mrow><mi>ϕ</mi><mo>=</mo><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></mrow></math></span> are introduced. Bell polynomials correspond to <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>i</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. We prove that when <span><math><mrow><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>i</mi><mo>≥</mo><mn>1</mn></mrow></math></span>: (a) the zeros of the generalized Bell polynomial <span><math><msubsup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>ϕ</mi></mrow></msubsup></math></span> are simple, real and non positive; (b) the zeros of <span><math><msubsup><mrow><mi>b</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>ϕ</mi></mrow></msubsup></math></span> interlace the zeros of <span><math><msubsup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>ϕ</mi></mrow></msubsup></math></span>; (c) the zeros are decreasing functions of the parameters <span><math><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. We find a hypergeometric representation for the generalized Bell polynomials. As a consequence, it is proved that the class of all generalized Bell polynomials is actually the same class as that of all Laguerre multiple polynomials of the first kind.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"306 ","pages":"Article 106121"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524001096","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, generalized Bell polynomials associated to a sequence of real numbers are introduced. Bell polynomials correspond to , . We prove that when , : (a) the zeros of the generalized Bell polynomial are simple, real and non positive; (b) the zeros of interlace the zeros of ; (c) the zeros are decreasing functions of the parameters . We find a hypergeometric representation for the generalized Bell polynomials. As a consequence, it is proved that the class of all generalized Bell polynomials is actually the same class as that of all Laguerre multiple polynomials of the first kind.
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.