Nan Lu , Qing Meng , Xiaogang Hou , Gaomeilin Sun , Fengshi Yin , Yong Li , Jiangtao Li
{"title":"Innovative fabrication and absorption enhancement in MgO-stabilized ZrO2/graphene composites","authors":"Nan Lu , Qing Meng , Xiaogang Hou , Gaomeilin Sun , Fengshi Yin , Yong Li , Jiangtao Li","doi":"10.1016/j.apt.2024.104731","DOIUrl":null,"url":null,"abstract":"<div><div>Developing radiative cooling coatings is an efficient and energy-conserving approach for thermal management in electronic devices. Spectral selectivity is crucial to daytime radiative cooling, typically achieved through complex structure or material designs. This work designs a radiative cooling coating with non-selective spectral characteristics for indoor electronic devices. The MgO-stabilized ZrO<sub>2</sub>/graphene (MSZ/G) powders are prepared in one step through combustion synthesis. Zirconium dioxide powders are utilized as a diluent in the combustion reaction of magnesium powders and carbon dioxide gas. The combustion process can reach a maximum temperature of 1869 °C. This study examines the impact of the diluent content on phase composition, microstructure, and absorptivity. The spectral absorptivity remains nearly constant, reaching up to 0.96, within the spectrum of 2.5–25 μm. The mechanism of absorption enhancement is illustrated in detail. The ZM8A-coated heat sink exhibits a decrease in equilibrium temperature of 9.1 °C when the heat power is 8 W. This outcome validates the effectiveness of non-selective broadband high-emissivity coatings for indoor thermal management. Therefore, this work provides simple and universal guidelines for designing radiative coating of electronic equipment that is not directly irradiated by solar.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"36 1","pages":"Article 104731"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124004084","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing radiative cooling coatings is an efficient and energy-conserving approach for thermal management in electronic devices. Spectral selectivity is crucial to daytime radiative cooling, typically achieved through complex structure or material designs. This work designs a radiative cooling coating with non-selective spectral characteristics for indoor electronic devices. The MgO-stabilized ZrO2/graphene (MSZ/G) powders are prepared in one step through combustion synthesis. Zirconium dioxide powders are utilized as a diluent in the combustion reaction of magnesium powders and carbon dioxide gas. The combustion process can reach a maximum temperature of 1869 °C. This study examines the impact of the diluent content on phase composition, microstructure, and absorptivity. The spectral absorptivity remains nearly constant, reaching up to 0.96, within the spectrum of 2.5–25 μm. The mechanism of absorption enhancement is illustrated in detail. The ZM8A-coated heat sink exhibits a decrease in equilibrium temperature of 9.1 °C when the heat power is 8 W. This outcome validates the effectiveness of non-selective broadband high-emissivity coatings for indoor thermal management. Therefore, this work provides simple and universal guidelines for designing radiative coating of electronic equipment that is not directly irradiated by solar.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)