{"title":"CuI/MnO2 nanocatalysed synthesis of bioactive 2-substituted benzimidazoles","authors":"Nisha , Sahil Kohli , Khushboo Aggarwal , Snigdha Singh , Neera Sharma , Ramesh Chandra","doi":"10.1016/j.inoche.2024.113556","DOIUrl":null,"url":null,"abstract":"<div><div>This work focusses on the development and characterization of efficient CuI/MnO<sub>2</sub> nano catalyst, characterized using XPS, XRD, EDAX, FTIR, FESEM, BET (surface area: 8.01 m<sup>2</sup>/g, a pore radius: 17.052 Å and a pore volume: 0.011 cm<sup>3</sup>/g) and TEM techniques. The reactivity of this catalyst was evaluated for the synthesis of biologically active 2-substituted benzimidazoles through condensation of <em>o</em>-phenylenediamine with benzaldehydes. The process features short reaction time, high TON (997.35), green conditions, high yield, easy work-up, good green metrices values such as low E-factor (0.17) and Process mass efficiency (PMI) (1.16) high Reaction mass efficiency (RME) value (91.2 %) and carbon efficiency (CE) (94 %) are good characteristics of the synthesized catalyst.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"171 ","pages":"Article 113556"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700324015466","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
This work focusses on the development and characterization of efficient CuI/MnO2 nano catalyst, characterized using XPS, XRD, EDAX, FTIR, FESEM, BET (surface area: 8.01 m2/g, a pore radius: 17.052 Å and a pore volume: 0.011 cm3/g) and TEM techniques. The reactivity of this catalyst was evaluated for the synthesis of biologically active 2-substituted benzimidazoles through condensation of o-phenylenediamine with benzaldehydes. The process features short reaction time, high TON (997.35), green conditions, high yield, easy work-up, good green metrices values such as low E-factor (0.17) and Process mass efficiency (PMI) (1.16) high Reaction mass efficiency (RME) value (91.2 %) and carbon efficiency (CE) (94 %) are good characteristics of the synthesized catalyst.
期刊介绍:
Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.