Enhancing mixing characteristics of MgCl2 solution within atomization nozzles: A computational fluid dynamics investigation of structural parameter

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Research & Design Pub Date : 2024-11-10 DOI:10.1016/j.cherd.2024.11.007
Honglei Yu , Lihua Fan , Dexi Wang , Hanshuo Yang , Ze Gong , Yunlong Li
{"title":"Enhancing mixing characteristics of MgCl2 solution within atomization nozzles: A computational fluid dynamics investigation of structural parameter","authors":"Honglei Yu ,&nbsp;Lihua Fan ,&nbsp;Dexi Wang ,&nbsp;Hanshuo Yang ,&nbsp;Ze Gong ,&nbsp;Yunlong Li","doi":"10.1016/j.cherd.2024.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient dispersion of MgCl<sub>2</sub> solution is crucial in saline lake industries. Understanding how structural variables influence atomization can improve nozzle design. This study uses Computational Fluid Dynamics (CFD) modeling to examine the effects of key structural parameters on MgCl<sub>2</sub> solution mixing in atomization nozzles. It focuses on the impact of liquid injection hole size, number of air injection holes, and mixing chamber length on the nozzle's fluid dynamics. The analysis covers variations in internal velocity and MgCl<sub>2</sub> volume fraction. Simulations show that increasing the liquid injection hole diameter reduces liquid flow resistance, while adding more air injection holes leads to a more uniform air distribution, though with a slight increase in atomization efficiency. A longer mixing chamber reduces gas phase velocity. Optimal mixing efficiency is achieved with 4 air injection holes, a 1.5 mm liquid injection hole, a 7 mm mixing chamber, a 2 mm nozzle outlet, 0.3 MPa inlet gas pressure, and an 80 L/h solution flow rate. This study provides insights into key parameters for improving performance and refining industrial applications.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"212 ","pages":"Pages 378-390"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224006373","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient dispersion of MgCl2 solution is crucial in saline lake industries. Understanding how structural variables influence atomization can improve nozzle design. This study uses Computational Fluid Dynamics (CFD) modeling to examine the effects of key structural parameters on MgCl2 solution mixing in atomization nozzles. It focuses on the impact of liquid injection hole size, number of air injection holes, and mixing chamber length on the nozzle's fluid dynamics. The analysis covers variations in internal velocity and MgCl2 volume fraction. Simulations show that increasing the liquid injection hole diameter reduces liquid flow resistance, while adding more air injection holes leads to a more uniform air distribution, though with a slight increase in atomization efficiency. A longer mixing chamber reduces gas phase velocity. Optimal mixing efficiency is achieved with 4 air injection holes, a 1.5 mm liquid injection hole, a 7 mm mixing chamber, a 2 mm nozzle outlet, 0.3 MPa inlet gas pressure, and an 80 L/h solution flow rate. This study provides insights into key parameters for improving performance and refining industrial applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强雾化喷嘴内氯化镁溶液的混合特性:结构参数的计算流体动力学研究
氯化镁溶液的高效分散在盐湖工业中至关重要。了解结构变量如何影响雾化可以改进喷嘴设计。本研究利用计算流体动力学(CFD)建模来研究关键结构参数对雾化喷嘴中氯化镁溶液混合的影响。研究重点是液体注入孔尺寸、空气注入孔数量和混合室长度对喷嘴流体动力学的影响。分析涵盖了内部速度和氯化镁体积分数的变化。模拟结果表明,增大液体喷射孔直径可减少液体流动阻力,而增加空气喷射孔可使空气分布更均匀,但雾化效率略有提高。较长的混合室可降低气相速度。在 4 个空气喷射孔、1.5 毫米液体喷射孔、7 毫米混合室、2 毫米喷嘴出口、0.3 兆帕入口气体压力和 80 升/小时溶液流速条件下,可实现最佳混合效率。这项研究为改进性能和完善工业应用的关键参数提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Research & Design
Chemical Engineering Research & Design 工程技术-工程:化工
CiteScore
6.10
自引率
7.70%
发文量
623
审稿时长
42 days
期刊介绍: ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering. Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.
期刊最新文献
Corrigendum to “Enhanced DeNOx catalysis: Induction-heating-catalysis-ready 3D stable Ni supported metal combinations” [Chem. Eng. Res. Des. 207 (2024) 404–419] Cu-Ni synergy in physicochemical properties of the Mg-Al oxides matrix to selective glycerol carbonate production Design of China first pilot plant for supercritical hydrothermal synthesis of AgNPs A high performance of thin film composite based on dextran substrate for effective removal of heavy metal ions Accelerating catalytic experimentation of water gas shift reaction using machine learning models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1