Junqing Wang , Tingting Zhang , Yang Liu , Shanshan Wang , Shuhua Liu , Yanlei Han , Hui Xu
{"title":"Adaptive laboratory evolution of Serratia marcescens with enhanced osmotic stress tolerance for prodigiosin synthesis","authors":"Junqing Wang , Tingting Zhang , Yang Liu , Shanshan Wang , Shuhua Liu , Yanlei Han , Hui Xu","doi":"10.1016/j.procbio.2024.11.016","DOIUrl":null,"url":null,"abstract":"<div><div>Prodigiosin, a valuable intracellular secondary metabolite, is produced by <em>Serratia marcescens</em>. However, synthesis during fermentation is constrained by osmotic pressure. In this study, adaptive laboratory evolution was applied to the strain SDSPY-136 to improve osmotic stress tolerance. After 120 passages, screening and validation yielded a strain with high osmotic pressure resistance, <em>S. marcescens</em> R82. The UV absorption spectrum, HPLC peak time, FTIR functional groups, and <sup>1</sup>H NMR chemical shifts revealed that the pigment generated by the evolved strain was prodigiosin. After batch fermentation in a 5 L bioreactor, the prodigiosin concentration was 11.4 g/L, double the initial strain. Transcriptomic analyses revealed significant enrichment for 830 genes. R82 showed alterations in various pathways, indicating that the regulation of intracellular metabolic pathways promoted the availability of prodigiosin precursors, increasing the capacity for prodigiosin synthesis and extracellular release. This study clarifies the molecular evolution mechanism and presents a novel approach for improving yields in <em>S. marcescens</em>.</div></div>","PeriodicalId":20811,"journal":{"name":"Process Biochemistry","volume":"148 ","pages":"Pages 32-42"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359511324003684","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Prodigiosin, a valuable intracellular secondary metabolite, is produced by Serratia marcescens. However, synthesis during fermentation is constrained by osmotic pressure. In this study, adaptive laboratory evolution was applied to the strain SDSPY-136 to improve osmotic stress tolerance. After 120 passages, screening and validation yielded a strain with high osmotic pressure resistance, S. marcescens R82. The UV absorption spectrum, HPLC peak time, FTIR functional groups, and 1H NMR chemical shifts revealed that the pigment generated by the evolved strain was prodigiosin. After batch fermentation in a 5 L bioreactor, the prodigiosin concentration was 11.4 g/L, double the initial strain. Transcriptomic analyses revealed significant enrichment for 830 genes. R82 showed alterations in various pathways, indicating that the regulation of intracellular metabolic pathways promoted the availability of prodigiosin precursors, increasing the capacity for prodigiosin synthesis and extracellular release. This study clarifies the molecular evolution mechanism and presents a novel approach for improving yields in S. marcescens.
期刊介绍:
Process Biochemistry is an application-orientated research journal devoted to reporting advances with originality and novelty, in the science and technology of the processes involving bioactive molecules and living organisms. These processes concern the production of useful metabolites or materials, or the removal of toxic compounds using tools and methods of current biology and engineering. Its main areas of interest include novel bioprocesses and enabling technologies (such as nanobiotechnology, tissue engineering, directed evolution, metabolic engineering, systems biology, and synthetic biology) applicable in food (nutraceutical), healthcare (medical, pharmaceutical, cosmetic), energy (biofuels), environmental, and biorefinery industries and their underlying biological and engineering principles.