{"title":"Multi-Criteria selection of Metals-based electrocatalysts for electrochemical ammonia synthesis","authors":"Seyed Taher Kermani Alghorayshi , Zeynab Bavarsad , Milad Imandoust , Solmaz Abbasi , Mehran Hadi Abedini Soodani , Rahim Zahedi","doi":"10.1016/j.seta.2024.104104","DOIUrl":null,"url":null,"abstract":"<div><div>The present study employed the Analytic Hierarchy Process (AHP), a renowned method for multi-criteria decision-making, to prioritize electrocatalysts for ammonia synthesis. This process considered the merits and demerits of both noble and non-noble metals electrocatalysts. The evaluation of seven parameters, including economic, lifetime, yield, selectivity, Faradaic efficiency (FE) and potentiometry, determines the justification of alternatives. In addition, there are seven types of electrocatalysts obtained from noble metals electrocatalysts, including Au, Pt, Ru, Rh, Pd, Ir, and Ag, as well as transition metal oxide (TMO), transition metal nitride (TMN), transition metal carbide (TMCA), transition metal chalcogenide (TMc), and other transition metal-based compounds (OTMB), and single atoms (SAs), derived from non-noble metals electrocatalysts, were considered as viable alternatives in light of the objective. According to the results of the multi-criteria evaluation, the criteria of yield, economic value, and lifetime had global weights of 0.306, 0.231, and 0.172, respectively, indicating their significance. Moreover, based on the criteria, Ru with a global weight of 0.189 and non-nobel metals SAs with a global weight of 0.214 are considered the most favored electrocatalysts for ammonia synthesis compared to both noble and non-noble electrocatalysts. The decision-making process considers economic justification (price), reaction yield, lifetime, FE, selectivity and potential as essential criteria, respectively. Ultimately, by closely considering the outcomes of individual atoms, the problems encountered by each catalyst can be effectively addressed, leading to impressive performance.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"73 ","pages":"Article 104104"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138824005009","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The present study employed the Analytic Hierarchy Process (AHP), a renowned method for multi-criteria decision-making, to prioritize electrocatalysts for ammonia synthesis. This process considered the merits and demerits of both noble and non-noble metals electrocatalysts. The evaluation of seven parameters, including economic, lifetime, yield, selectivity, Faradaic efficiency (FE) and potentiometry, determines the justification of alternatives. In addition, there are seven types of electrocatalysts obtained from noble metals electrocatalysts, including Au, Pt, Ru, Rh, Pd, Ir, and Ag, as well as transition metal oxide (TMO), transition metal nitride (TMN), transition metal carbide (TMCA), transition metal chalcogenide (TMc), and other transition metal-based compounds (OTMB), and single atoms (SAs), derived from non-noble metals electrocatalysts, were considered as viable alternatives in light of the objective. According to the results of the multi-criteria evaluation, the criteria of yield, economic value, and lifetime had global weights of 0.306, 0.231, and 0.172, respectively, indicating their significance. Moreover, based on the criteria, Ru with a global weight of 0.189 and non-nobel metals SAs with a global weight of 0.214 are considered the most favored electrocatalysts for ammonia synthesis compared to both noble and non-noble electrocatalysts. The decision-making process considers economic justification (price), reaction yield, lifetime, FE, selectivity and potential as essential criteria, respectively. Ultimately, by closely considering the outcomes of individual atoms, the problems encountered by each catalyst can be effectively addressed, leading to impressive performance.
期刊介绍:
Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.