Optimizing ZnFe2O4 with copper substitution for improved lithium storage performance

IF 4.4 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Communications Pub Date : 2024-11-19 DOI:10.1016/j.inoche.2024.113572
Muneer Hussain , Abrar Hussain , Anjum Hussain , Syed Mustansar Abbas , Muhammad Tahir Khan , Faisal Katib Alanazi , Naif Ahmed Alshehri
{"title":"Optimizing ZnFe2O4 with copper substitution for improved lithium storage performance","authors":"Muneer Hussain ,&nbsp;Abrar Hussain ,&nbsp;Anjum Hussain ,&nbsp;Syed Mustansar Abbas ,&nbsp;Muhammad Tahir Khan ,&nbsp;Faisal Katib Alanazi ,&nbsp;Naif Ahmed Alshehri","doi":"10.1016/j.inoche.2024.113572","DOIUrl":null,"url":null,"abstract":"<div><div>The facile sol–gel method is used to synthesize Zn<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> (0 ≤ x ≤ 0.4) nanoparticles and tested as LIBs anode. The research demonstrated the successful substitution of Zn<sup>+2</sup> with Cu<sup>+2</sup> ions within the cubic spinel framework of ZnFe<sub>2</sub>O<sub>4</sub>. The average crystalline size of the prepared samples confirmed by XRD ranged from 40.98 to 31.40 nm. FESEM and EDS analyses revealed particle morphologies and elemental distributions, with average particle sizes ranging from 30 to 40 nm. A higher Cu concentration correlates with a lower band gap energy, as indicated by DRS analysis. The incorporation of dopants into ZnFe<sub>2</sub>O<sub>4</sub> significantly improves its overall electrical conductivity, leading to enhanced electrochemical performance when utilized as an anode in LIBs. The Zn<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.2), attains the highest specific surface area of 206.4 m<sup>2</sup> g<sup>−1</sup> and exhibits an average pore size of about 12 nm. The Zn<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.2) electrode delivered maximum initial charge/discharge specific capacities of 1472.8/1274.5 mAh g<sup>−1</sup>, resulting in a coulombic efficiency of 86.5 %. In comparison to pure ZnFe<sub>2</sub>O<sub>4</sub>, which delivered a specific capacity of only 794.7 mAh g<sup>−1</sup> after 100 cycles, the Zn<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.2) electrode demonstrated remarkable cycling stability by maintaining a capacity of 910.1 mAh g<sup>−1</sup> at a current density of 0.1 A g<sup>−1</sup>. Additionally, the electrode exhibited outstanding rate performance characteristics, maintaining a specific capacity of 788.0 mAh g<sup>−1</sup> at a high current density of 5.0 A/g. The superior electrochemical results obtained for Zn<sub>1-x</sub>Cu<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> (x = 0.2) demonstrate its potential as a high-performance electrode material for battery technology.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"171 ","pages":"Article 113572"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700324015624","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The facile sol–gel method is used to synthesize Zn1-xCuxFe2O4 (0 ≤ x ≤ 0.4) nanoparticles and tested as LIBs anode. The research demonstrated the successful substitution of Zn+2 with Cu+2 ions within the cubic spinel framework of ZnFe2O4. The average crystalline size of the prepared samples confirmed by XRD ranged from 40.98 to 31.40 nm. FESEM and EDS analyses revealed particle morphologies and elemental distributions, with average particle sizes ranging from 30 to 40 nm. A higher Cu concentration correlates with a lower band gap energy, as indicated by DRS analysis. The incorporation of dopants into ZnFe2O4 significantly improves its overall electrical conductivity, leading to enhanced electrochemical performance when utilized as an anode in LIBs. The Zn1-xCuxFe2O4 (x = 0.2), attains the highest specific surface area of 206.4 m2 g−1 and exhibits an average pore size of about 12 nm. The Zn1-xCuxFe2O4 (x = 0.2) electrode delivered maximum initial charge/discharge specific capacities of 1472.8/1274.5 mAh g−1, resulting in a coulombic efficiency of 86.5 %. In comparison to pure ZnFe2O4, which delivered a specific capacity of only 794.7 mAh g−1 after 100 cycles, the Zn1-xCuxFe2O4 (x = 0.2) electrode demonstrated remarkable cycling stability by maintaining a capacity of 910.1 mAh g−1 at a current density of 0.1 A g−1. Additionally, the electrode exhibited outstanding rate performance characteristics, maintaining a specific capacity of 788.0 mAh g−1 at a high current density of 5.0 A/g. The superior electrochemical results obtained for Zn1-xCuxFe2O4 (x = 0.2) demonstrate its potential as a high-performance electrode material for battery technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化铜替代 ZnFe2O4,提高锂存储性能
该研究采用简便的溶胶-凝胶法合成了 Zn1-xCuxFe2O4 (0 ≤ x ≤ 0.4) 纳米粒子,并将其作为 LIBs 阳极进行了测试。研究表明,在 ZnFe2O4 的立方尖晶石框架内,成功地用 Cu+2 离子取代了 Zn+2。经 XRD 证实,所制备样品的平均结晶尺寸在 40.98 至 31.40 nm 之间。FESEM 和 EDS 分析显示了颗粒形态和元素分布,平均颗粒大小在 30 至 40 纳米之间。DRS 分析表明,铜浓度越高,带隙能越低。在 ZnFe2O4 中加入掺杂剂可显著提高其整体导电性,从而在用作 LIB 负极时提高电化学性能。Zn1-xCuxFe2O4(x = 0.2)的比表面积最高,达到 206.4 m2 g-1,平均孔径约为 12 nm。Zn1-xCuxFe2O4 (x = 0.2) 电极的最大初始充放电比容量为 1472.8/1274.5 mAh g-1,库仑效率为 86.5%。与纯 ZnFe2O4 相比,Zn1-xCuxFe2O4(x = 0.2)电极在 100 次循环后的比容量仅为 794.7 mAh g-1,而 Zn1-xCuxFe2O4(x = 0.2)电极在 0.1 A g-1 的电流密度下保持了 910.1 mAh g-1 的容量,表现出显著的循环稳定性。此外,该电极还表现出出色的速率性能特性,在 5.0 A/g 的高电流密度下仍能保持 788.0 mAh g-1 的比容量。Zn1-xCuxFe2O4(x = 0.2)获得的优异电化学结果证明了其作为电池技术中高性能电极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Communications
Inorganic Chemistry Communications 化学-无机化学与核化学
CiteScore
5.50
自引率
7.90%
发文量
1013
审稿时长
53 days
期刊介绍: Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.
期刊最新文献
Synthesis of green emissive Plectranthus scutellarioides carbon dots for sustainable and label-free detection of phytohormone indole-3-acetic acid Editorial Board Recent advances in biotechnology applications of bacteriocin-selenium nanoconjugates Seebeck coefficient and thermal properties of graphene oxide doped calcium cobalt copper oxide nanoceramics Facile hydrothermal synthesis of Cu doped MoS2 nanoparticles for enhanced dye-sensitized solar cell performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1