Anticancer evaluation of Co(III) complex derived from 1-isonicotinoyl-4-(4-nitrophenyl)-3-thiosemicarbazide: Structural characterization, photophysical, and Hirshfeld studies
{"title":"Anticancer evaluation of Co(III) complex derived from 1-isonicotinoyl-4-(4-nitrophenyl)-3-thiosemicarbazide: Structural characterization, photophysical, and Hirshfeld studies","authors":"Ram Nayan Gautam , Alok Shukla , Suryansh Chandra , Sundeep Kumar , A. Acharya , Mamata Singh , R.J. Butcher , M.K. Bharty","doi":"10.1016/j.inoche.2024.113521","DOIUrl":null,"url":null,"abstract":"<div><div>A new cationic complex, [Co((<em>intph</em>)(<em>en</em>)<sub>2</sub>]Cl, derived from the 1-isonicotinoyl-4-(4-nitrophenyl)-3-thiosemicarbazide (H<sub>2</sub><em>intph</em>), is reported. The synthesized ligand and its corresponding Co(III) complex were successfully characterized by applying FT-IR and UV–visible spectroscopic techniques and single crystal ray diffraction data. Molecular geometries of the ligand and its Co(III) complex were accurately determined from their respective X-ray crystallographic analysis. The ligand and [Co((<em>intph</em>)(<em>en</em>)<sub>2</sub>]Cl crystallize in Triclinic <em>and</em> monoclinic systems with space groups P-1 and P 2<sub>1</sub>/n<em>,</em> respectively. The crystal structures of H<sub>2</sub><em>intph</em> and [Co((<em>intph</em>)(<em>en</em>)<sub>2</sub>]Cl are stabilized by weak C-H⋯O, N-H⋯O, and C-H⋯Cl hydrogen bonding interactions. Hirshfeld surface analysis was accomplished to investigate intermolecular hydrogen bonding interactions found in ligand H<sub>2</sub>intph and [Co((intph)(en)<sub>2</sub>]Cl. The cytotoxicity of the ligand and the complex [Co((intph)(en)<sub>2</sub>]Cl was assessed for their anticancer potential against human glioblastoma (U87) and Dalton lymphoma (DL) cell lines. The complex exhibited IC<sub>50</sub> values of 100 μg/mL for U87 cells and 120 μg/mL for DL cells, indicating the concentration at which 50 % of cell viability was inhibited. In comparison, the ligand was less effective in the MTT assay against both U87 and DL cells. These results suggest that the complex [Co((intph)(en)<sub>2</sub>]Cl significantly reduces glioblastoma cell viability. Treatment with the complex induced cell death through both apoptotic and necrotic pathways, as evidenced by Hoechst/PI double staining. Additionally, there was an increase in intracellular reactive oxygen species (ROS), highlighting the role of oxidative stress in the anticancer activity of the [Co((intph)(en)<sub>2</sub>]Cl complex. Furthermore, fluorescence studies were carried out which revealed the order of fluorescence behaviors between the ligand and the Co(III) complex to be Co(III) complex > H<sub>2</sub><em>intph</em>.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"171 ","pages":"Article 113521"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700324015119","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
A new cationic complex, [Co((intph)(en)2]Cl, derived from the 1-isonicotinoyl-4-(4-nitrophenyl)-3-thiosemicarbazide (H2intph), is reported. The synthesized ligand and its corresponding Co(III) complex were successfully characterized by applying FT-IR and UV–visible spectroscopic techniques and single crystal ray diffraction data. Molecular geometries of the ligand and its Co(III) complex were accurately determined from their respective X-ray crystallographic analysis. The ligand and [Co((intph)(en)2]Cl crystallize in Triclinic and monoclinic systems with space groups P-1 and P 21/n, respectively. The crystal structures of H2intph and [Co((intph)(en)2]Cl are stabilized by weak C-H⋯O, N-H⋯O, and C-H⋯Cl hydrogen bonding interactions. Hirshfeld surface analysis was accomplished to investigate intermolecular hydrogen bonding interactions found in ligand H2intph and [Co((intph)(en)2]Cl. The cytotoxicity of the ligand and the complex [Co((intph)(en)2]Cl was assessed for their anticancer potential against human glioblastoma (U87) and Dalton lymphoma (DL) cell lines. The complex exhibited IC50 values of 100 μg/mL for U87 cells and 120 μg/mL for DL cells, indicating the concentration at which 50 % of cell viability was inhibited. In comparison, the ligand was less effective in the MTT assay against both U87 and DL cells. These results suggest that the complex [Co((intph)(en)2]Cl significantly reduces glioblastoma cell viability. Treatment with the complex induced cell death through both apoptotic and necrotic pathways, as evidenced by Hoechst/PI double staining. Additionally, there was an increase in intracellular reactive oxygen species (ROS), highlighting the role of oxidative stress in the anticancer activity of the [Co((intph)(en)2]Cl complex. Furthermore, fluorescence studies were carried out which revealed the order of fluorescence behaviors between the ligand and the Co(III) complex to be Co(III) complex > H2intph.
期刊介绍:
Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.