A newer electrochemical technique to use europium-doped CaZrO3 nanoparticles: Dopamine sensing and energy storage application

IF 4.4 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Communications Pub Date : 2024-11-15 DOI:10.1016/j.inoche.2024.113552
Nandini Robin Nadar , J. Deepak , S.C. Sharma , B.R. Radha Krushna , S. Vijayanand , S.T. Elayakumar , Swati Mishra , D. Veera Vanitha , H. Nagabhushana
{"title":"A newer electrochemical technique to use europium-doped CaZrO3 nanoparticles: Dopamine sensing and energy storage application","authors":"Nandini Robin Nadar ,&nbsp;J. Deepak ,&nbsp;S.C. Sharma ,&nbsp;B.R. Radha Krushna ,&nbsp;S. Vijayanand ,&nbsp;S.T. Elayakumar ,&nbsp;Swati Mishra ,&nbsp;D. Veera Vanitha ,&nbsp;H. Nagabhushana","doi":"10.1016/j.inoche.2024.113552","DOIUrl":null,"url":null,"abstract":"<div><div>This research focuses on the critical need for more efficient and stable materials in biosensing and energy storage, driven by the growing demand for accurate medical diagnostics and renewable energy solutions. In this study, Europium (Eu) doping was employed to enhance the performance of CaZrO<sub>3</sub> for dopamine detection and supercapacitor applications. Europium-doped CaZrO<sub>3</sub> (ECZO) nanoparticles were synthesized and incorporated into a modified carbon paste electrode (MCPE) for dopamine detection. Cyclic voltammetry (CV) and Differential Pulse Voltammetry (DPV) analyses revealed significant improvements in dopamine detection, with ECZO-MCPE achieving a peak current of 78.9 µA, a detection limit of 0.455 µM, and a quantification limit of 1.514 µM. The ECZO-MCPE also demonstrated remarkable stability, retaining 92 % of its activity after 20 cycles. In supercapacitor applications, ECZO NPs exhibited a specific capacitance of 243 F/g at a current density of 0.0005 A and an energy density of 48.6 Wh/kg at a power density of 1000 W/kg, with 86.48 % capacitance retention after 5000 charge–discharge cycles. These findings indicate that ECZO NPs are highly effective in enhancing electrode performance and hold promise for future advancements in biosensing and energy storage technologies.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"171 ","pages":"Article 113552"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700324015429","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This research focuses on the critical need for more efficient and stable materials in biosensing and energy storage, driven by the growing demand for accurate medical diagnostics and renewable energy solutions. In this study, Europium (Eu) doping was employed to enhance the performance of CaZrO3 for dopamine detection and supercapacitor applications. Europium-doped CaZrO3 (ECZO) nanoparticles were synthesized and incorporated into a modified carbon paste electrode (MCPE) for dopamine detection. Cyclic voltammetry (CV) and Differential Pulse Voltammetry (DPV) analyses revealed significant improvements in dopamine detection, with ECZO-MCPE achieving a peak current of 78.9 µA, a detection limit of 0.455 µM, and a quantification limit of 1.514 µM. The ECZO-MCPE also demonstrated remarkable stability, retaining 92 % of its activity after 20 cycles. In supercapacitor applications, ECZO NPs exhibited a specific capacitance of 243 F/g at a current density of 0.0005 A and an energy density of 48.6 Wh/kg at a power density of 1000 W/kg, with 86.48 % capacitance retention after 5000 charge–discharge cycles. These findings indicate that ECZO NPs are highly effective in enhancing electrode performance and hold promise for future advancements in biosensing and energy storage technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用掺铕 CaZrO3 纳米粒子的新型电化学技术:多巴胺传感和储能应用
这项研究的重点是,在精确医疗诊断和可再生能源解决方案需求不断增长的推动下,生物传感和能源存储领域对更高效、更稳定材料的迫切需求。本研究采用掺杂铕(Eu)的方法来提高 CaZrO3 在多巴胺检测和超级电容器应用中的性能。研究人员合成了掺铕的 CaZrO3(ECZO)纳米粒子,并将其加入到改性碳浆电极(MCPE)中,用于多巴胺检测。循环伏安法(CV)和差分脉冲伏安法(DPV)分析表明,ECZO-MCPE 的峰值电流为 78.9 µA,检测限为 0.455 µM,定量限为 1.514 µM,大大提高了多巴胺的检测能力。ECZO-MCPE 还表现出卓越的稳定性,在 20 个周期后仍能保持 92% 的活性。在超级电容器应用中,ECZO NPs 在电流密度为 0.0005 A 时的比电容为 243 F/g,在功率密度为 1000 W/kg 时的能量密度为 48.6 Wh/kg,5000 次充放电循环后的电容保持率为 86.48%。这些研究结果表明,ECZO NPs 在提高电极性能方面非常有效,有望在未来推动生物传感和储能技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Communications
Inorganic Chemistry Communications 化学-无机化学与核化学
CiteScore
5.50
自引率
7.90%
发文量
1013
审稿时长
53 days
期刊介绍: Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.
期刊最新文献
Synthesis of green emissive Plectranthus scutellarioides carbon dots for sustainable and label-free detection of phytohormone indole-3-acetic acid Editorial Board Recent advances in biotechnology applications of bacteriocin-selenium nanoconjugates Seebeck coefficient and thermal properties of graphene oxide doped calcium cobalt copper oxide nanoceramics Facile hydrothermal synthesis of Cu doped MoS2 nanoparticles for enhanced dye-sensitized solar cell performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1