Hemang D. Brahmbhatt, Manish Chowdhary, Rohit Gupta, Anshu Priya, Akta Kundu, Praveen Singh, Sonam Dhamija, Aayush Gupta, Archana Singh
{"title":"Stem cell factor-mediated upregulation of SIRT1 protects melanin-deprived keratinocytes against UV-induced DNA damage in individuals with vitiligo","authors":"Hemang D. Brahmbhatt, Manish Chowdhary, Rohit Gupta, Anshu Priya, Akta Kundu, Praveen Singh, Sonam Dhamija, Aayush Gupta, Archana Singh","doi":"10.1096/fj.202400550R","DOIUrl":null,"url":null,"abstract":"<p>Despite the loss of melanocytes, individuals with vitiligo have a significantly lower risk of developing skin malignancies compared to ethnicity-matched controls. The study investigated the molecular mechanisms that protect skin cells (keratinocytes) from UV-B-induced DNA damage in individuals with vitiligo. The study found that upregulation of stem cell factor (SCF) signaling significantly reduced γ-H2AX positivity and cyclobutane pyrimidine dimer formation and improved mitochondrial health (elongated mitochondria, reduced reactive oxygen species [ROS] and lipid peroxidation) in keratinocytes upon UV-B exposure. Interestingly, SCF treatment also reduced lipid droplet accumulation and triacylglyceride levels by upregulating lipoprotein lipase (LPL). Further, siLPL increased DNA damage and lipid droplet (LD) accumulation, while NO-1886, an LPL agonist, reversed both, suggesting a direct link between lipid metabolism and DNA damage. Downregulation of NAD-dependent deacetylase sirtuin1 (SIRT1) with siRNA or with Ex-527, a pharmacological inhibitor of SIRT1, diminished the protective effects mediated by SCF and NO-1886, suggesting SIRT1 to be the final effector protein in the SCF-LPL-SIRT1 signaling axis. Analysis of clinical samples of vitiligo corroborated the upregulation of SCF and LPL in lesional epidermis. In conclusion, our study demonstrates a novel SCF-LPL-SIRT1 signaling axis that confers protection to vitiligo keratinocytes from the harmful effects of UV-B radiation.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"38 22","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202400550R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the loss of melanocytes, individuals with vitiligo have a significantly lower risk of developing skin malignancies compared to ethnicity-matched controls. The study investigated the molecular mechanisms that protect skin cells (keratinocytes) from UV-B-induced DNA damage in individuals with vitiligo. The study found that upregulation of stem cell factor (SCF) signaling significantly reduced γ-H2AX positivity and cyclobutane pyrimidine dimer formation and improved mitochondrial health (elongated mitochondria, reduced reactive oxygen species [ROS] and lipid peroxidation) in keratinocytes upon UV-B exposure. Interestingly, SCF treatment also reduced lipid droplet accumulation and triacylglyceride levels by upregulating lipoprotein lipase (LPL). Further, siLPL increased DNA damage and lipid droplet (LD) accumulation, while NO-1886, an LPL agonist, reversed both, suggesting a direct link between lipid metabolism and DNA damage. Downregulation of NAD-dependent deacetylase sirtuin1 (SIRT1) with siRNA or with Ex-527, a pharmacological inhibitor of SIRT1, diminished the protective effects mediated by SCF and NO-1886, suggesting SIRT1 to be the final effector protein in the SCF-LPL-SIRT1 signaling axis. Analysis of clinical samples of vitiligo corroborated the upregulation of SCF and LPL in lesional epidermis. In conclusion, our study demonstrates a novel SCF-LPL-SIRT1 signaling axis that confers protection to vitiligo keratinocytes from the harmful effects of UV-B radiation.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.