Role of Aralkylamine N-Acetyltransferase in the Response to Antioxidative Stress in the Fruit Fly Drosophila Melanogaster Adults

IF 1.5 4区 农林科学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Archives of Insect Biochemistry and Physiology Pub Date : 2024-11-25 DOI:10.1002/arch.70009
Arnau Rodríguez-Illamola, Roman Sidorov, Radmila Čapková-Frydrychová, Dalibor Kodrík
{"title":"Role of Aralkylamine N-Acetyltransferase in the Response to Antioxidative Stress in the Fruit Fly Drosophila Melanogaster Adults","authors":"Arnau Rodríguez-Illamola,&nbsp;Roman Sidorov,&nbsp;Radmila Čapková-Frydrychová,&nbsp;Dalibor Kodrík","doi":"10.1002/arch.70009","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In multicellular organisms, the indole melatonin synthesized by aralkylamine N-acetyltransferase (AANATI) serves as an antioxidant. To test this, sex-mixed 3-day-old mated fly adults <i>bw</i><sup><i>1</i></sup> and AANAT1 homozygous recessive loss-of-function mutant (<i>bw AANAT1</i><sup><i>lo</i></sup>) of <i>Drosophila melanogaster</i> were fed by a standard diet or by one containing paraquat (PQ, 1,1′-dimethyl-4,4′-bipyridilium dichloride hydrate) at a final concentration of 15.5 mM. Experiment lasted 8 h and began at 11 a.m. In <i>bw</i><sup><i>1</i></sup> flies the paraquat treatment resulted in a significant (evaluated by Student's <i>t</i>-tests) decrease of the superoxide dismutase (SOD) activity and an increase the catalase (CAT) and glutathione S-transferase (GST) activities. Meanwhile, in these flies, total Antioxidative capacity (TAC) was significantly curbed by the paraquat presence. Importantly, these changes were not observed in the AANAT1-mutants. Thus, melatonin seems to play an important defence role against the oxidative stress elicited by paraquat.</p></div>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"117 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Insect Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/arch.70009","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In multicellular organisms, the indole melatonin synthesized by aralkylamine N-acetyltransferase (AANATI) serves as an antioxidant. To test this, sex-mixed 3-day-old mated fly adults bw1 and AANAT1 homozygous recessive loss-of-function mutant (bw AANAT1lo) of Drosophila melanogaster were fed by a standard diet or by one containing paraquat (PQ, 1,1′-dimethyl-4,4′-bipyridilium dichloride hydrate) at a final concentration of 15.5 mM. Experiment lasted 8 h and began at 11 a.m. In bw1 flies the paraquat treatment resulted in a significant (evaluated by Student's t-tests) decrease of the superoxide dismutase (SOD) activity and an increase the catalase (CAT) and glutathione S-transferase (GST) activities. Meanwhile, in these flies, total Antioxidative capacity (TAC) was significantly curbed by the paraquat presence. Importantly, these changes were not observed in the AANAT1-mutants. Thus, melatonin seems to play an important defence role against the oxidative stress elicited by paraquat.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
烷基胺 N-乙酰转移酶在果蝇成虫抗氧化应激反应中的作用
在多细胞生物中,烷基胺N-乙酰转移酶(AANATI)合成的吲哚褪黑激素是一种抗氧化剂。为了验证这一点,我们用标准饲料或含有百草枯(PQ,1,1′-二甲基-4,4′-联吡啶二氯化物水合物)(最终浓度为 15.5 mM)的饲料喂养黑腹果蝇的 3 日龄交配成蝇 bw1 和 AANAT1 同源隐性功能缺失突变体(bw AANAT1lo)。在 bw1 苍蝇中,百草枯处理导致超氧化物歧化酶(SOD)活性显著下降(通过学生 t 检验进行评估),过氧化氢酶(CAT)和谷胱甘肽 S 转移酶(GST)活性上升。同时,在这些苍蝇中,百草枯的存在明显抑制了总抗氧化能力(TAC)。重要的是,在AANAT1突变体中没有观察到这些变化。因此,褪黑激素似乎对百草枯引起的氧化应激起着重要的防御作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
4.50%
发文量
115
审稿时长
12 months
期刊介绍: Archives of Insect Biochemistry and Physiology is an international journal that publishes articles in English that are of interest to insect biochemists and physiologists. Generally these articles will be in, or related to, one of the following subject areas: Behavior, Bioinformatics, Carbohydrates, Cell Line Development, Cell Signalling, Development, Drug Discovery, Endocrinology, Enzymes, Lipids, Molecular Biology, Neurobiology, Nucleic Acids, Nutrition, Peptides, Pharmacology, Pollinators, Proteins, Toxicology. Archives will publish only original articles. Articles that are confirmatory in nature or deal with analytical methods previously described will not be accepted.
期刊最新文献
Activin β Is Critical for Larval-Pupal Transition in the 28 Spotted Lady Beetle Henosepilachna vigintioctopunctata. Apprehending siRNA Machinery and Gene Silencing in Brinjal Shoot and Fruit Borer, Leucinodes orbonalis. Optimizing Feeding and Pupation Bioassays to Assess the Effects of Insecticidal and Repellent Treatments on Aethina tumida Larval Development and Pupation Success. Stimulation of IRES-Dependent Translation by Rocaglamide A Increases the Replication and Virulence of Cricket Paralysis Virus in Lepidopteran Insect Cells. Transgenerational Plasticity of Maternal Hemolymph Trehalose in Aphids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1