Modeling the structure and relaxation in glycerol-silica nanocomposites.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Soft Matter Pub Date : 2024-11-25 DOI:10.1039/d4sm00846d
Koksal Karakus, Valeriy V Ginzburg, Keith Promislow, Leela Rakesh
{"title":"Modeling the structure and relaxation in glycerol-silica nanocomposites.","authors":"Koksal Karakus, Valeriy V Ginzburg, Keith Promislow, Leela Rakesh","doi":"10.1039/d4sm00846d","DOIUrl":null,"url":null,"abstract":"<p><p>The relationship between the dynamics and structure of amorphous thin films and nanocomposites near their glass transition is an important problem in soft-matter physics. Here, we develop a simple theoretical approach to describe the density profile and the α-relaxation time of a glycerol-silica nanocomposite (S. Cheng <i>et al.</i>, <i>J. Chem. Phys.</i>, 2015, <b>143</b>, 194704). We begin by applying the Derjaguin approximation, where we replace the curved surface of the particle with the planar one; thus, modeling the nanocomposite is reduced to that of a confined thin film. Subsequently, by employing the molecular dynamics (MD) simulation data of Cheng <i>et al.</i>, we approximate the density profile of a supported liquid thin film as a stationary solution of a fourth-order partial differential equation (PDE). We then construct an appropriate density functional, from which the density profile emerges through the minimization of free energy. Our final assumption is that of a consistent, temperature-independent scaled density profile, ensuring that the free volume throughout the entire nanocomposite increases with temperature in a smooth, monotonic fashion. Considering the established relationship between glycerol relaxation time and temperature, we can employ Doolittle-type analysis (\"naïve\" free-volume model), to calculate the relaxation time based on temperature and film thickness. We then convert the film thickness into the interparticle distance and subsequently the filler volume fraction for the nanocomposites and compare our model predictions with experimental data, resulting in a good agreement. The proposed approach can be easily extended to other nanocomposite and film systems.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm00846d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The relationship between the dynamics and structure of amorphous thin films and nanocomposites near their glass transition is an important problem in soft-matter physics. Here, we develop a simple theoretical approach to describe the density profile and the α-relaxation time of a glycerol-silica nanocomposite (S. Cheng et al., J. Chem. Phys., 2015, 143, 194704). We begin by applying the Derjaguin approximation, where we replace the curved surface of the particle with the planar one; thus, modeling the nanocomposite is reduced to that of a confined thin film. Subsequently, by employing the molecular dynamics (MD) simulation data of Cheng et al., we approximate the density profile of a supported liquid thin film as a stationary solution of a fourth-order partial differential equation (PDE). We then construct an appropriate density functional, from which the density profile emerges through the minimization of free energy. Our final assumption is that of a consistent, temperature-independent scaled density profile, ensuring that the free volume throughout the entire nanocomposite increases with temperature in a smooth, monotonic fashion. Considering the established relationship between glycerol relaxation time and temperature, we can employ Doolittle-type analysis ("naïve" free-volume model), to calculate the relaxation time based on temperature and film thickness. We then convert the film thickness into the interparticle distance and subsequently the filler volume fraction for the nanocomposites and compare our model predictions with experimental data, resulting in a good agreement. The proposed approach can be easily extended to other nanocomposite and film systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甘油-二氧化硅纳米复合材料的结构和弛豫模型。
无定形薄膜和纳米复合材料接近玻璃化转变时的动力学与结构之间的关系是软物质物理学中的一个重要问题。在此,我们开发了一种简单的理论方法来描述甘油-二氧化硅纳米复合材料(S. Cheng et al., J. Chem. Phys., 2015, 143, 194704)的密度曲线和α-松弛时间。我们首先应用德雅金近似,用平面代替粒子的曲面;这样,纳米复合材料的建模就简化为约束薄膜的建模。随后,我们利用 Cheng 等人的分子动力学(MD)模拟数据,将支撑液体薄膜的密度曲线近似为四阶偏微分方程(PDE)的静态解。然后,我们构建了一个适当的密度函数,通过自由能的最小化得出密度曲线。我们的最后一个假设是,与温度无关的缩放密度曲线保持一致,确保整个纳米复合材料的自由体积随着温度的升高而平滑、单调地增加。考虑到甘油弛豫时间与温度之间的既定关系,我们可以采用杜利特尔分析法("天真 "自由体积模型),根据温度和薄膜厚度计算弛豫时间。然后,我们将薄膜厚度换算成颗粒间距离,进而换算出纳米复合材料的填料体积分数,并将模型预测结果与实验数据进行比较,结果显示两者吻合得很好。所提出的方法可以很容易地扩展到其他纳米复合材料和薄膜体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Where physics meets chemistry meets biology for fundamental soft matter research.
期刊最新文献
Back cover Collective motion of energy depot active disks. Comparison of velocity field characteristics of gas invasion via viscous fingering and elastic fracturing in visco-elasto-plastic fluids. Composite of knitted fabric and soft matrix. I. Crack growth in the course direction. Divalent cation effects in the glass transition of poly(diallyldimethylammonium)-poly(styrene sulfonate) polyelectrolyte complexes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1