Elucidating different microbiologically influenced corrosion behavior of copper, 90/10 Cu-Ni alloy, 70/30 Cu-Ni alloy and nickel from the perspective of element content

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioelectrochemistry Pub Date : 2024-11-22 DOI:10.1016/j.bioelechem.2024.108854
Fan Feng , Yanan Pu , Su Hou , Congrui Zhu , Shougang Chen
{"title":"Elucidating different microbiologically influenced corrosion behavior of copper, 90/10 Cu-Ni alloy, 70/30 Cu-Ni alloy and nickel from the perspective of element content","authors":"Fan Feng ,&nbsp;Yanan Pu ,&nbsp;Su Hou ,&nbsp;Congrui Zhu ,&nbsp;Shougang Chen","doi":"10.1016/j.bioelechem.2024.108854","DOIUrl":null,"url":null,"abstract":"<div><div>This research examined the varying susceptibility of pure copper (Cu), 90/10 copper-nickel (Cu-Ni) alloy, 70/30 Cu-Ni alloy, and pure nickel (Ni) to microbiologically influenced corrosion (MIC) induced by <em>Desulfovibrio vulgaris</em>, with a focus on the elemental composition of the materials. The results revealed a progressive shift in MIC behavior across these metals and alloys, with increased corrosion severity observed as Ni content decreased. Element Ni improved the corrosion resistance of the alloy while also preventing the growth of microorganisms. Both planktonic and sessile cell counts decreased as the Ni content increased. The corrosion rate, determined by weight loss, followed this order: pure Cu (25.7 ± 3.8 mg·cm<sup>−2</sup>, 0.75 mm·y<sup>−1</sup>) &gt; 90/10 Cu-Ni alloy (9.1 ± 1.4 mg·cm<sup>−2</sup>, 0.27 mm·y<sup>−1</sup>) &gt; 70/30 Cu-Ni alloy (4.3 ± 0.8 mg·cm<sup>−2</sup>, 0.16 mm·y<sup>−1</sup>) &gt; pure Ni (2.1 ± 0.7 mg·cm<sup>−2</sup>, 0.06 mm·y<sup>−1</sup>). The corrosion current density (<em>i</em><sub>corr</sub>) of pure Cu (3.03 × 10<sup>−5</sup> A·cm<sup>−2</sup>) was approximately 20-fold that of pure Ni (1.54 × 10<sup>−6</sup> A·cm<sup>−2</sup>). There was a correlation between the electrochemical and weight loss results. Thermodynamic analysis and experimental results indicated that M-MIC was the primary MIC mechanism for pure Cu. While both M-MIC and EET-MIC were engaged in the MIC mechanisms of 90/10 Cu-Ni and 70/30 Cu-Ni alloys, the predominant mechanism was EET-MIC for pure Ni.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"162 ","pages":"Article 108854"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424002160","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This research examined the varying susceptibility of pure copper (Cu), 90/10 copper-nickel (Cu-Ni) alloy, 70/30 Cu-Ni alloy, and pure nickel (Ni) to microbiologically influenced corrosion (MIC) induced by Desulfovibrio vulgaris, with a focus on the elemental composition of the materials. The results revealed a progressive shift in MIC behavior across these metals and alloys, with increased corrosion severity observed as Ni content decreased. Element Ni improved the corrosion resistance of the alloy while also preventing the growth of microorganisms. Both planktonic and sessile cell counts decreased as the Ni content increased. The corrosion rate, determined by weight loss, followed this order: pure Cu (25.7 ± 3.8 mg·cm−2, 0.75 mm·y−1) > 90/10 Cu-Ni alloy (9.1 ± 1.4 mg·cm−2, 0.27 mm·y−1) > 70/30 Cu-Ni alloy (4.3 ± 0.8 mg·cm−2, 0.16 mm·y−1) > pure Ni (2.1 ± 0.7 mg·cm−2, 0.06 mm·y−1). The corrosion current density (icorr) of pure Cu (3.03 × 10−5 A·cm−2) was approximately 20-fold that of pure Ni (1.54 × 10−6 A·cm−2). There was a correlation between the electrochemical and weight loss results. Thermodynamic analysis and experimental results indicated that M-MIC was the primary MIC mechanism for pure Cu. While both M-MIC and EET-MIC were engaged in the MIC mechanisms of 90/10 Cu-Ni and 70/30 Cu-Ni alloys, the predominant mechanism was EET-MIC for pure Ni.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从元素含量的角度阐明微生物对铜、90/10 铜镍合金、70/30 铜镍合金和镍的腐蚀行为的不同影响。
这项研究考察了纯铜(Cu)、90/10 铜镍(Cu-Ni)合金、70/30 铜镍(Cu-Ni)合金和纯镍(Ni)对由普通脱硫弧菌诱发的微生物影响腐蚀(MIC)的不同敏感性,重点关注材料的元素组成。结果表明,这些金属和合金的 MIC 行为逐渐发生变化,随着镍含量的降低,腐蚀的严重程度增加。镍元素提高了合金的耐腐蚀性,同时也阻止了微生物的生长。随着镍含量的增加,浮游和无柄细胞数都有所减少。根据重量损失确定的腐蚀速率依次为:纯铜(25.7 ± 3.8 mg-cm-2,0.75 mm-y-1)> 90/10 铜镍合金(9.1 ± 1.4 mg-cm-2,0.27 mm-y-1)> 70/30 铜镍合金(4.3 ± 0.8 mg-cm-2,0.16 mm-y-1)>纯镍(2.1 ± 0.7 mg-cm-2,0.06 mm-y-1)。纯铜的腐蚀电流密度(icorr)(3.03 × 10-5 A-cm-2)约为纯镍(1.54 × 10-6 A-cm-2)的 20 倍。电化学和失重结果之间存在相关性。热力学分析和实验结果表明,M-MIC 是纯铜的主要 MIC 机制。虽然 M-MIC 和 EET-MIC 都参与了 90/10 铜镍和 70/30 铜镍合金的 MIC 机制,但对于纯 Ni 而言,主要机制是 EET-MIC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
期刊最新文献
Corrigendum to "Analysis of electromagnetic response of cells and lipid membranes using a model-free method" [Bioelectrochemistry 152 (2023) 108444]. Corrigendum to "Molecular monolayers on silicon as substrates for biosensors" [Bioelectrochem. 80(1) (2010) 17-25]. Advanced cortisol detection: A cMWCNTs-enhanced MB@Zr-MOF ratiometric electrochemical aptasensor. An electrochemical aptasensor based on bimetallic carbon nanocomposites AuPt@rGO for ultrasensitive detection of adenosine on portable potentiostat. Cytochrome P450 electrochemical biosensors transforming in vitro metabolism testing - Opportunities and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1