Elucidating different microbiologically influenced corrosion behavior of copper, 90/10 Cu-Ni alloy, 70/30 Cu-Ni alloy and nickel from the perspective of element content
Fan Feng , Yanan Pu , Su Hou , Congrui Zhu , Shougang Chen
{"title":"Elucidating different microbiologically influenced corrosion behavior of copper, 90/10 Cu-Ni alloy, 70/30 Cu-Ni alloy and nickel from the perspective of element content","authors":"Fan Feng , Yanan Pu , Su Hou , Congrui Zhu , Shougang Chen","doi":"10.1016/j.bioelechem.2024.108854","DOIUrl":null,"url":null,"abstract":"<div><div>This research examined the varying susceptibility of pure copper (Cu), 90/10 copper-nickel (Cu-Ni) alloy, 70/30 Cu-Ni alloy, and pure nickel (Ni) to microbiologically influenced corrosion (MIC) induced by <em>Desulfovibrio vulgaris</em>, with a focus on the elemental composition of the materials. The results revealed a progressive shift in MIC behavior across these metals and alloys, with increased corrosion severity observed as Ni content decreased. Element Ni improved the corrosion resistance of the alloy while also preventing the growth of microorganisms. Both planktonic and sessile cell counts decreased as the Ni content increased. The corrosion rate, determined by weight loss, followed this order: pure Cu (25.7 ± 3.8 mg·cm<sup>−2</sup>, 0.75 mm·y<sup>−1</sup>) > 90/10 Cu-Ni alloy (9.1 ± 1.4 mg·cm<sup>−2</sup>, 0.27 mm·y<sup>−1</sup>) > 70/30 Cu-Ni alloy (4.3 ± 0.8 mg·cm<sup>−2</sup>, 0.16 mm·y<sup>−1</sup>) > pure Ni (2.1 ± 0.7 mg·cm<sup>−2</sup>, 0.06 mm·y<sup>−1</sup>). The corrosion current density (<em>i</em><sub>corr</sub>) of pure Cu (3.03 × 10<sup>−5</sup> A·cm<sup>−2</sup>) was approximately 20-fold that of pure Ni (1.54 × 10<sup>−6</sup> A·cm<sup>−2</sup>). There was a correlation between the electrochemical and weight loss results. Thermodynamic analysis and experimental results indicated that M-MIC was the primary MIC mechanism for pure Cu. While both M-MIC and EET-MIC were engaged in the MIC mechanisms of 90/10 Cu-Ni and 70/30 Cu-Ni alloys, the predominant mechanism was EET-MIC for pure Ni.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"162 ","pages":"Article 108854"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424002160","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This research examined the varying susceptibility of pure copper (Cu), 90/10 copper-nickel (Cu-Ni) alloy, 70/30 Cu-Ni alloy, and pure nickel (Ni) to microbiologically influenced corrosion (MIC) induced by Desulfovibrio vulgaris, with a focus on the elemental composition of the materials. The results revealed a progressive shift in MIC behavior across these metals and alloys, with increased corrosion severity observed as Ni content decreased. Element Ni improved the corrosion resistance of the alloy while also preventing the growth of microorganisms. Both planktonic and sessile cell counts decreased as the Ni content increased. The corrosion rate, determined by weight loss, followed this order: pure Cu (25.7 ± 3.8 mg·cm−2, 0.75 mm·y−1) > 90/10 Cu-Ni alloy (9.1 ± 1.4 mg·cm−2, 0.27 mm·y−1) > 70/30 Cu-Ni alloy (4.3 ± 0.8 mg·cm−2, 0.16 mm·y−1) > pure Ni (2.1 ± 0.7 mg·cm−2, 0.06 mm·y−1). The corrosion current density (icorr) of pure Cu (3.03 × 10−5 A·cm−2) was approximately 20-fold that of pure Ni (1.54 × 10−6 A·cm−2). There was a correlation between the electrochemical and weight loss results. Thermodynamic analysis and experimental results indicated that M-MIC was the primary MIC mechanism for pure Cu. While both M-MIC and EET-MIC were engaged in the MIC mechanisms of 90/10 Cu-Ni and 70/30 Cu-Ni alloys, the predominant mechanism was EET-MIC for pure Ni.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.