{"title":"Ectopic expression of choline oxidase (<i>codA</i>) gene from <i>Arthrobacter globiformis</i> confers drought stress tolerance in transgenic sugarcane.","authors":"Appunu Chinnaswamy, S R Harish Chandar, Valarmathi Ramanathan, Mahadevaiah Chennappa, Surya Krishna Sakthivel, Malarvizhi Arthanari, Swathi Thangavel, Arun Kumar Raja, Rachayya Devarumath, Sushir Kapil Vijayrao, Parasuraman Boominathan","doi":"10.1007/s13205-024-04151-y","DOIUrl":null,"url":null,"abstract":"<p><p>Drought is a serious problem that impacts sugarcane production and productivity worldwide. In this current investigation, a codon-optimized choline oxidase (<i>codA</i>) gene was transformed into <i>Saccharum</i> hybrid cultivar Co 86032 through <i>Agrobacterium</i>-mediated transformation. The transgenic events with the <i>codA</i> gene driven by the portubi882 (PD2) promoter accumulated elevated levels of glycine betaine (5 - 10µg/g) whereas untransformed control plants accumulated less than 1.5µg/g which in turn maintained the plant health by sustaining transpiration rate (4 - 5 µmol of H<sub>2</sub>O/cm<sup>2</sup>/s) and photosynthetic efficiency (30 - 34 µmol/Co<sub>2</sub>/s) whereas the control plants suffered from 50% reduction under water-deficit stress condition. Morpho-anatomic cross-sections of both transgenic events and control plants exhibited significant differences in the epidermal layer and sclerenchyma cells under stress conditions. The relative water content (71 - 76%) and chlorophyll fluorescence (0.60 - 0.72 Fv/Fm) were higher in transgenic events compared to control plants respectively recorded 59% and 0.50 respectively. In addition, significantly elevated activity of antioxidant enzymes viz., superoxide dismutase (95 - 102 U/g), catalase (65 - 73 umol/min/g), ascorbate peroxidase (1700 - 1900 umol/min/mg) and glutathione reductase (17 - 20 umol/min/mg) were observed in transgenic events along with reduced levels of hydrogen peroxide (14 - 16 µmol/g) and malondialdehyde (14 - 17 nmol/g) content. Transgenic events recorded significantly higher arial biomass content compared to untransformed plant after the drought stress. Overall, the increased expression levels of <i>codA</i> gene in sugarcane events resulted in an enhanced ability to withstand water-deficit conditions.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13205-024-04151-y.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 12","pages":"309"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584842/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04151-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drought is a serious problem that impacts sugarcane production and productivity worldwide. In this current investigation, a codon-optimized choline oxidase (codA) gene was transformed into Saccharum hybrid cultivar Co 86032 through Agrobacterium-mediated transformation. The transgenic events with the codA gene driven by the portubi882 (PD2) promoter accumulated elevated levels of glycine betaine (5 - 10µg/g) whereas untransformed control plants accumulated less than 1.5µg/g which in turn maintained the plant health by sustaining transpiration rate (4 - 5 µmol of H2O/cm2/s) and photosynthetic efficiency (30 - 34 µmol/Co2/s) whereas the control plants suffered from 50% reduction under water-deficit stress condition. Morpho-anatomic cross-sections of both transgenic events and control plants exhibited significant differences in the epidermal layer and sclerenchyma cells under stress conditions. The relative water content (71 - 76%) and chlorophyll fluorescence (0.60 - 0.72 Fv/Fm) were higher in transgenic events compared to control plants respectively recorded 59% and 0.50 respectively. In addition, significantly elevated activity of antioxidant enzymes viz., superoxide dismutase (95 - 102 U/g), catalase (65 - 73 umol/min/g), ascorbate peroxidase (1700 - 1900 umol/min/mg) and glutathione reductase (17 - 20 umol/min/mg) were observed in transgenic events along with reduced levels of hydrogen peroxide (14 - 16 µmol/g) and malondialdehyde (14 - 17 nmol/g) content. Transgenic events recorded significantly higher arial biomass content compared to untransformed plant after the drought stress. Overall, the increased expression levels of codA gene in sugarcane events resulted in an enhanced ability to withstand water-deficit conditions.
Supplementary information: The online version contains supplementary material available at 10.1007/s13205-024-04151-y.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.