PDGFRα-positive cell-derived TIMP-1 modulates adaptive immune responses to influenza A viral infection.

IF 3.6 2区 医学 Q1 PHYSIOLOGY American journal of physiology. Lung cellular and molecular physiology Pub Date : 2025-01-01 Epub Date: 2024-11-25 DOI:10.1152/ajplung.00104.2024
Saugata Dutta, Yin Zhu, Sultan Almuntashiri, Hong Yong Peh, Joaquin Zuñiga, Duo Zhang, Payaningal R Somanath, Gustavo Ramírez, Valeria Irineo-Moreno, Fabiola Jiménez-Juárez, Karen López-Salinas, Nora Regino, Paloma Campero, Stephen J Crocker, Caroline A Owen, Xiaoyun Wang
{"title":"PDGFRα-positive cell-derived TIMP-1 modulates adaptive immune responses to influenza A viral infection.","authors":"Saugata Dutta, Yin Zhu, Sultan Almuntashiri, Hong Yong Peh, Joaquin Zuñiga, Duo Zhang, Payaningal R Somanath, Gustavo Ramírez, Valeria Irineo-Moreno, Fabiola Jiménez-Juárez, Karen López-Salinas, Nora Regino, Paloma Campero, Stephen J Crocker, Caroline A Owen, Xiaoyun Wang","doi":"10.1152/ajplung.00104.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a physiologic inhibitor of the matrix metalloproteinases (MMPs), but little is known about the role of TIMP-1 in regulating the pathogenesis of influenza A virus (IAV) infection. Here, we performed both in vivo and in vitro experiments to investigate the regulation and function of TIMP-1 during IAV infection. Specifically, plasma levels of TIMP-1 are significantly increased in human subjects and wild-type (WT) mice infected with 2009 H1N1 IAV compared with levels in uninfected controls. Also, TIMP-1 is strikingly upregulated in PDGFRα positive (PDGFRα<sup>+</sup>) cells in IAV-infected murine lungs as demonstrated using conditional KO (cKO) mice with a specific deletion of <i>Timp-1</i> in PDGFRα<sup>+</sup> cells. Our in vitro data indicated that TIMP-1 is induced by transforming growth factor-β (TGF-β) during lipofibroblasts (lipoFBs)-to-myofibroblast (myoFB) transdifferentiation. <i>Timp-1</i> deficiency protects mice from H1N1 IAV-induced weight loss, mortality, and lung injury. IAV-infected <i>Timp-1-</i>deficient mice showed increased macrophages, and B and T cell counts in bronchoalveolar lavage (BAL) on <i>day 7</i> postinfection (p.i.), but reduced BAL neutrophil counts. Increased Cxcl12 levels were detected in both BAL cells and lungs from <i>Timp-1-</i>deficient mice on <i>day 3</i> p.i. Taken together, our data strongly link TIMP-1 to IAV pathogenesis. We identified that PDGFRα-lineage cells are the main cellular source of elevated TIMP-1 during IAV infection. Loss of <i>Timp-1</i> attenuates IAV-induced mortality and promotes T and B cell recruitment. Thus, TIMP-1 may be a novel therapeutic target for IAV infection.<b>NEW & NOTEWORTHY</b> Our data strongly link tissue inhibitor of metalloproteinases-1 (TIMP-1) to influenza A virus (IAV) pathogenesis. TIMP-1 is highly increased in PDGFRα-lineage cells during IAV infection. Transforming growth factor-β (TGF-β) induces TIMP-1 during lipofibroblast (lipoFB)-to- myofibroblast (myoFB) transdifferentiation. <i>Timp-1</i> deficiency protects mice from H1N1 IAV-induced weight loss, mortality, and lung injury. TIMP-1 may be a novel therapeutic target for IAV infection.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L60-L74"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00104.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a physiologic inhibitor of the matrix metalloproteinases (MMPs), but little is known about the role of TIMP-1 in regulating the pathogenesis of influenza A virus (IAV) infection. Here, we performed both in vivo and in vitro experiments to investigate the regulation and function of TIMP-1 during IAV infection. Specifically, plasma levels of TIMP-1 are significantly increased in human subjects and wild-type (WT) mice infected with 2009 H1N1 IAV compared with levels in uninfected controls. Also, TIMP-1 is strikingly upregulated in PDGFRα positive (PDGFRα+) cells in IAV-infected murine lungs as demonstrated using conditional KO (cKO) mice with a specific deletion of Timp-1 in PDGFRα+ cells. Our in vitro data indicated that TIMP-1 is induced by transforming growth factor-β (TGF-β) during lipofibroblasts (lipoFBs)-to-myofibroblast (myoFB) transdifferentiation. Timp-1 deficiency protects mice from H1N1 IAV-induced weight loss, mortality, and lung injury. IAV-infected Timp-1-deficient mice showed increased macrophages, and B and T cell counts in bronchoalveolar lavage (BAL) on day 7 postinfection (p.i.), but reduced BAL neutrophil counts. Increased Cxcl12 levels were detected in both BAL cells and lungs from Timp-1-deficient mice on day 3 p.i. Taken together, our data strongly link TIMP-1 to IAV pathogenesis. We identified that PDGFRα-lineage cells are the main cellular source of elevated TIMP-1 during IAV infection. Loss of Timp-1 attenuates IAV-induced mortality and promotes T and B cell recruitment. Thus, TIMP-1 may be a novel therapeutic target for IAV infection.NEW & NOTEWORTHY Our data strongly link tissue inhibitor of metalloproteinases-1 (TIMP-1) to influenza A virus (IAV) pathogenesis. TIMP-1 is highly increased in PDGFRα-lineage cells during IAV infection. Transforming growth factor-β (TGF-β) induces TIMP-1 during lipofibroblast (lipoFB)-to- myofibroblast (myoFB) transdifferentiation. Timp-1 deficiency protects mice from H1N1 IAV-induced weight loss, mortality, and lung injury. TIMP-1 may be a novel therapeutic target for IAV infection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PDGFRα阳性细胞衍生的TIMP-1可调节对甲型流感病毒感染的适应性免疫反应。
TIMP-1(金属蛋白酶组织抑制剂-1)是基质金属蛋白酶(MMPs)的生理性抑制剂,但人们对 TIMP-1 在调节甲型流感病毒(IAV)感染发病机制中的作用知之甚少。在此,我们进行了体内和体外实验来研究 TIMP-1 在 IAV 感染过程中的调控和功能。具体来说,与未感染的对照组相比,感染了 2009 H1N1 IAV 的人类受试者和野生型(WT)小鼠血浆中的 TIMP-1 水平明显升高。此外,在感染 IAV 的小鼠肺部,PDGFRα 阳性(PDGFRα+)细胞中的 TIMP-1 明显上调,这一点已通过在 PDGFRα+ 细胞中特异性缺失 Timp-1 的条件性 KO(cKO)小鼠得到证实。我们的体外研究数据表明,在脂成纤维细胞(lipoFBs)向肌成纤维细胞(myoFB)转分化过程中,TIMP-1会被TGF-β诱导。缺乏 Timp-1 可保护小鼠免受 H1N1 IAV 引起的体重减轻、死亡和肺损伤。感染 IAV 的 Timp-1 基因缺陷小鼠在感染后第 7 天的支气管肺泡灌洗液(BAL)中显示巨噬细胞、B 细胞和 T 细胞数量增加,但 BAL 中性粒细胞数量减少。总之,我们的数据将 TIMP-1 与 IAV 发病机制紧密联系在一起。我们发现,在 IAV 感染期间,PDGFRα-系细胞是 TIMP-1 升高的主要细胞来源。TIMP-1 的缺失会降低 IAV 诱导的死亡率,并促进 T 细胞和 B 细胞的招募。因此,TIMP-1 可能是治疗 IAV 感染的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
期刊最新文献
Evidence of sex differences in ozone-induced oxysterol and cytokine levels in differentiated human nasal epithelial cells. mTOR signaling regulates multiple metabolic pathways in human lung fibroblasts after TGF-β and in pulmonary fibrosis. Engineered hydrogel biomaterials facilitate lung progenitor cell differentiation from induced pluripotent stem cells. The Circulating Renin-Angiotensin System and Mortality among Patients Hospitalized for COVID-19: A Mechanistic Substudy of the ACTIV-4 Host Tissue Trials. Distinct single cell transcriptional profile in CD4+ T-lymphocytes among obese children with asthma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1