IQGAP1 promotes early B cell development, is essential for the development of marginal zone (MZ) B cells, and is critical for both T-dependent and T-independent antibody responses.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cellular and Molecular Life Sciences Pub Date : 2024-11-25 DOI:10.1007/s00018-024-05509-4
Ravi K Lella, Subramaniam Malarkannan
{"title":"IQGAP1 promotes early B cell development, is essential for the development of marginal zone (MZ) B cells, and is critical for both T-dependent and T-independent antibody responses.","authors":"Ravi K Lella, Subramaniam Malarkannan","doi":"10.1007/s00018-024-05509-4","DOIUrl":null,"url":null,"abstract":"<p><p>IQGAP1 is a multi-functional scaffold protein. However, its role in B cell development and function is unknown. Here, we show IQGAP1 as an essential scaffold that regulates early B cell development and function. Iqgap1<sup>-/-</sup> mice contained significantly increased numbers of B220<sup>+</sup> B, B220<sup>+</sup>IgM<sup>-</sup> pro/pre-B, and B220<sup>Low</sup>IgM<sup>+</sup> immature-B cells in the bone marrow. In the spleens of the Iqgap1<sup>-/-</sup> mice, newly formed and follicular B cell numbers were increased, while the marginal zone B cell numbers were significantly reduced. Lack of IQGAP1 reduced T-dependent and T-independent humoral responses. Mechanistically, the lack of IQGAP1 considerably decreased the phosphorylation of Mek1/2, Erk1/2, and Jnk1/2. B cells from Iqgap1<sup>-/-</sup> mice failed to suppress IL-7R-mediated activation of Stat5a/b, an essential step for cell-cycle exit and initiate light-chain recombination, reducing RS rearrangement frequency. Our study provides the first evidence that IQGAP1-based signalosome is necessary for the development and functions of B cells.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"462"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05509-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

IQGAP1 is a multi-functional scaffold protein. However, its role in B cell development and function is unknown. Here, we show IQGAP1 as an essential scaffold that regulates early B cell development and function. Iqgap1-/- mice contained significantly increased numbers of B220+ B, B220+IgM- pro/pre-B, and B220LowIgM+ immature-B cells in the bone marrow. In the spleens of the Iqgap1-/- mice, newly formed and follicular B cell numbers were increased, while the marginal zone B cell numbers were significantly reduced. Lack of IQGAP1 reduced T-dependent and T-independent humoral responses. Mechanistically, the lack of IQGAP1 considerably decreased the phosphorylation of Mek1/2, Erk1/2, and Jnk1/2. B cells from Iqgap1-/- mice failed to suppress IL-7R-mediated activation of Stat5a/b, an essential step for cell-cycle exit and initiate light-chain recombination, reducing RS rearrangement frequency. Our study provides the first evidence that IQGAP1-based signalosome is necessary for the development and functions of B cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IQGAP1 促进早期 B 细胞的发育,对边缘区 (MZ) B 细胞的发育至关重要,对依赖 T 和不依赖 T 的抗体反应也至关重要。
IQGAP1 是一种多功能支架蛋白。然而,它在 B 细胞发育和功能中的作用尚不清楚。在这里,我们发现 IQGAP1 是调节早期 B 细胞发育和功能的重要支架。Iqgap1-/- 小鼠骨髓中 B220+ B、B220+IgM- pro/pre-B 和 B220LowIgM+ 未成熟 B 细胞的数量明显增加。在 Iqgap1-/- 小鼠的脾脏中,新形成和滤泡 B 细胞数量增加,而边缘区 B 细胞数量明显减少。缺乏 IQGAP1 会降低 T 依赖性和 T 依赖性体液反应。从机理上讲,缺乏 IQGAP1 会大大降低 Mek1/2、Erk1/2 和 Jnk1/2 的磷酸化。Iqgap1-/-小鼠的B细胞不能抑制IL-7R介导的Stat5a/b的活化(这是细胞周期退出和启动轻链重组的重要步骤),从而降低了RS重排的频率。我们的研究首次证明了基于 IQGAP1 的信号体对 B 细胞的发育和功能是必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
期刊最新文献
IQGAP1 promotes early B cell development, is essential for the development of marginal zone (MZ) B cells, and is critical for both T-dependent and T-independent antibody responses. Regulation of formin INF2 and its alteration in INF2-linked inherited disorders. MicroRNA-145-5p inhibits the tumorigenesis of breast cancer through SENP2-regulated ubiquitination of ERK2. GSDMD-dependent NET formation in hyperuricemic nephropathy. Lactate promotes H3K18 lactylation in human neuroectoderm differentiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1