Exploring the potential of self-pulsing optical microresonators for spiking neural networks and sensing

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-11-22 DOI:10.1038/s42005-024-01869-2
Stefano Biasi, Alessio Lugnan, Davide Micheli, Lorenzo Pavesi
{"title":"Exploring the potential of self-pulsing optical microresonators for spiking neural networks and sensing","authors":"Stefano Biasi, Alessio Lugnan, Davide Micheli, Lorenzo Pavesi","doi":"10.1038/s42005-024-01869-2","DOIUrl":null,"url":null,"abstract":"Photonic platforms are promising for implementing neuromorphic hardware due to their high processing speed, low power consumption, and ability to perform parallel processing. A ubiquitous device in integrated photonics, which has been extensively employed for the realization of optical neuromorphic hardware, is the microresonator. The ability of CMOS-compatible silicon microring resonators to store energy enhances the nonlinear interaction between light and matter, enabling energy efficient nonlinearity, fading memory and the generation of spikes via self-pulsing. In the self-pulsing regime, a constant input signal can be transformed into a time-dependent signal based on pulse sequences. Previous research has shown that self-pulsing enables the microresonator to function as an energy-efficient artificial spiking neuron. Here, we extend the experimental study of single and coupled microresonators in the self-pulsing regime to confirm their potential as building blocks for scalable photonic spiking neural networks. Furthermore, we demonstrate their potential for introducing all-optical long-term memory and event detection capabilities into integrated photonic neural networks. In particular, we show all-optical long-term memory up to at least 10 μs and detection of input spike rates, which is encoded into different stable self-pulsing dynamics. While silicon photonics is an attractive platform for neuromorphic computing, it generally lacks scalable nodes that provide nonlinearity and memory. Here, the authors show experimentally that simple and compact networks of silicon microring resonators exhibit complex self-pulsing responses that can be exploited for all-optical long-term memory and sensing.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01869-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photonic platforms are promising for implementing neuromorphic hardware due to their high processing speed, low power consumption, and ability to perform parallel processing. A ubiquitous device in integrated photonics, which has been extensively employed for the realization of optical neuromorphic hardware, is the microresonator. The ability of CMOS-compatible silicon microring resonators to store energy enhances the nonlinear interaction between light and matter, enabling energy efficient nonlinearity, fading memory and the generation of spikes via self-pulsing. In the self-pulsing regime, a constant input signal can be transformed into a time-dependent signal based on pulse sequences. Previous research has shown that self-pulsing enables the microresonator to function as an energy-efficient artificial spiking neuron. Here, we extend the experimental study of single and coupled microresonators in the self-pulsing regime to confirm their potential as building blocks for scalable photonic spiking neural networks. Furthermore, we demonstrate their potential for introducing all-optical long-term memory and event detection capabilities into integrated photonic neural networks. In particular, we show all-optical long-term memory up to at least 10 μs and detection of input spike rates, which is encoded into different stable self-pulsing dynamics. While silicon photonics is an attractive platform for neuromorphic computing, it generally lacks scalable nodes that provide nonlinearity and memory. Here, the authors show experimentally that simple and compact networks of silicon microring resonators exhibit complex self-pulsing responses that can be exploited for all-optical long-term memory and sensing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索自脉冲光学微谐振器在尖峰神经网络和传感方面的潜力。
光子平台具有处理速度快、功耗低和能够执行并行处理等优点,因此在实现神经形态硬件方面大有可为。微谐振器是集成光子学中的一种无处不在的器件,已被广泛用于实现光学神经形态硬件。与 CMOS 兼容的硅微谐振器能够存储能量,从而增强光与物质之间的非线性相互作用,实现高能效的非线性、衰减记忆以及通过自脉冲产生尖峰。在自脉冲机制中,恒定输入信号可根据脉冲序列转化为随时间变化的信号。以往的研究表明,自脉冲可使微谐振器发挥高能效人工尖峰神经元的功能。在这里,我们扩展了对自脉动机制中单个和耦合微谐振器的实验研究,以证实它们作为可扩展光子尖峰神经网络构建模块的潜力。此外,我们还证明了它们将全光长期记忆和事件检测功能引入集成光子神经网络的潜力。特别是,我们展示了至少长达 10 μs 的全光长期记忆和输入尖峰率检测,并将其编码为不同的稳定自脉动动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media One-third magnetization plateau in Quantum Kagome antiferromagnet Two-dimensional cooling without repump laser beams through ion motional heating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1