Wind tunnel experimental study on the influence of super-large natural ventilation cooling tower on the flow and diffusion of pollutants.

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Technology Pub Date : 2024-11-24 DOI:10.1080/09593330.2024.2428443
Ruojie Li, Junfang Zhang, Yichen Yao, Minghua Lyu, Yunpeng Li, Yanhui Pan, Sibo Lyu
{"title":"Wind tunnel experimental study on the influence of super-large natural ventilation cooling tower on the flow and diffusion of pollutants.","authors":"Ruojie Li, Junfang Zhang, Yichen Yao, Minghua Lyu, Yunpeng Li, Yanhui Pan, Sibo Lyu","doi":"10.1080/09593330.2024.2428443","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a wind tunnel experiment was carried out to study the atmospheric flow and pollutant diffusion around a super-large natural ventilation cooling tower of a nuclear power plant. Considering the effect of the natural ventilation of the cooling tower, with the chimney as the center, X-type hot-wire probes were used to measure the average flow field and turbulence structure of the atmosphere around the cooling tower and other complexes, and pollutant diffusion studies were carried out by tracer experiments. The results show that the super-large natural ventilation cooling tower and its thermal plume emission have a significant effect on pollutant flow and diffusion, changing the trajectory of the plume. When the chimney is located upwind of the cooling tower, some pollutants are emitted secondly due to the entrainment effect through the cooling tower when the plume passes through the natural ventilation cooling tower, regardless of whether or not the cooling tower is operating. Compared with the cooling tower that does not operate, the thermal plume and natural ventilation effects generated by the cooling tower during operation cause the plume dispersion range to widen, the maximum concentration to decrease, and the impact on vertical diffusion to be more significant than that on horizontal diffusion.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-11"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2428443","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a wind tunnel experiment was carried out to study the atmospheric flow and pollutant diffusion around a super-large natural ventilation cooling tower of a nuclear power plant. Considering the effect of the natural ventilation of the cooling tower, with the chimney as the center, X-type hot-wire probes were used to measure the average flow field and turbulence structure of the atmosphere around the cooling tower and other complexes, and pollutant diffusion studies were carried out by tracer experiments. The results show that the super-large natural ventilation cooling tower and its thermal plume emission have a significant effect on pollutant flow and diffusion, changing the trajectory of the plume. When the chimney is located upwind of the cooling tower, some pollutants are emitted secondly due to the entrainment effect through the cooling tower when the plume passes through the natural ventilation cooling tower, regardless of whether or not the cooling tower is operating. Compared with the cooling tower that does not operate, the thermal plume and natural ventilation effects generated by the cooling tower during operation cause the plume dispersion range to widen, the maximum concentration to decrease, and the impact on vertical diffusion to be more significant than that on horizontal diffusion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超大型自然通风冷却塔对污染物流动和扩散影响的风洞实验研究。
本文通过风洞试验研究了核电站超大型自然通风冷却塔周围的大气流动和污染物扩散情况。考虑到冷却塔自然通风的效果,以烟囱为中心,采用 X 型热线探头测量了冷却塔及其他建筑群周围大气的平均流场和湍流结构,并通过示踪实验进行了污染物扩散研究。结果表明,超大型自然通风冷却塔及其热羽流排放对污染物的流动和扩散有显著影响,改变了羽流的轨迹。当烟囱位于冷却塔上风向时,无论冷却塔是否运行,当烟羽通过自然通风冷却塔时,由于冷却塔的夹带效应,部分污染物会二次排放。与不运行的冷却塔相比,冷却塔在运行时产生的热羽流和自然通风效应使羽流扩散范围扩大,最大浓度降低,对垂直扩散的影响比对水平扩散的影响大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
期刊最新文献
Combining gamma-radiation and bioaugmentation enhances wastewater's quality for its reuse in agricultural purposes. Degradation mechanism and toxicity assessment of clofibric acid by Fe2+/PS process in saline pharmaceutical wastewater. Enhanced bioenergy recovery by innovative application of chia seeds nanopowder for anode modification in microbial fuel cell treating hospital wastewater. Far-UVC direct photolysis of iohexol and acetochlor: an experimental and mechanism study. Preparation of α-FeOOH with different crystallinity and its low-temperature desulfurization performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1