STAT5 activation enhances adoptive therapy combined with peptide vaccination by preventing PD-1 inhibition.

IF 5.3 2区 医学 Q1 ONCOLOGY Molecular Cancer Therapeutics Pub Date : 2024-11-25 DOI:10.1158/1535-7163.MCT-24-0505
Aaron E Fan, Hussein Sultan, Takumi Kumai, Valentyna I Fesenkova, Juan Wu, John D Klement, Joshua D Bernstock, Gregory K Friedman, Esteban Celis
{"title":"STAT5 activation enhances adoptive therapy combined with peptide vaccination by preventing PD-1 inhibition.","authors":"Aaron E Fan, Hussein Sultan, Takumi Kumai, Valentyna I Fesenkova, Juan Wu, John D Klement, Joshua D Bernstock, Gregory K Friedman, Esteban Celis","doi":"10.1158/1535-7163.MCT-24-0505","DOIUrl":null,"url":null,"abstract":"<p><p>Adoptive cell therapy (ACT) using retrovirally transduced T cells represents a promising strategy for enhancing antitumor responses. When used with TriVax, a peptide vaccination strategy, this approach synergistically expands antigen-specific cell populations. STAT5 plays a vital role as a transcription factor in regulating T cell proliferation and their differentiation into effector and memory T cells. We aimed to explore the combination therapy using CD8 T cells engineered to express constitutively active STAT5 (CA-STAT5) with vaccines. CD8 T cells were transduced with a retrovirus (RV) encoding the mouse gp100 T cell receptor (TCR). In certain treatment groups, cells were also co-transduced with RV encoding CA-STAT5. We assessed transduction efficiency and functional activity through flow cytometry and various functional assays. B16F10 tumor-bearing mice were treated with ACT using RV-transduced CD8 T cells and subsequently vaccinated with TriVax. We demonstrate that TriVax selectively enhanced the expansion of ACT cell populations bearing gp100-specific TCRs. T cells engineered to express CA-STAT5 showed not only increased expansion and polyfunctionality but also reduced PD-1 expression, leading to decreased cellular exhaustion. In a B16F10 melanoma mouse model, our approach yielded a potent antitumor effect, with CA-STAT5 further amplifying this response. We found that CA-STAT5 improved antitumor activities, in part, by attenuating the PD-1/PD-L1 inhibitory pathway. These findings indicate that TCR-transduced CD8 T cells can undergo antigen-dependent expansion when exposed to TriVax. Additionally, the expression of CA-STAT5 enhances T cell proliferation and persistence, partly by promoting resistance to PD-1/PD-L1-mediated inhibition in antitumor T cells.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0505","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Adoptive cell therapy (ACT) using retrovirally transduced T cells represents a promising strategy for enhancing antitumor responses. When used with TriVax, a peptide vaccination strategy, this approach synergistically expands antigen-specific cell populations. STAT5 plays a vital role as a transcription factor in regulating T cell proliferation and their differentiation into effector and memory T cells. We aimed to explore the combination therapy using CD8 T cells engineered to express constitutively active STAT5 (CA-STAT5) with vaccines. CD8 T cells were transduced with a retrovirus (RV) encoding the mouse gp100 T cell receptor (TCR). In certain treatment groups, cells were also co-transduced with RV encoding CA-STAT5. We assessed transduction efficiency and functional activity through flow cytometry and various functional assays. B16F10 tumor-bearing mice were treated with ACT using RV-transduced CD8 T cells and subsequently vaccinated with TriVax. We demonstrate that TriVax selectively enhanced the expansion of ACT cell populations bearing gp100-specific TCRs. T cells engineered to express CA-STAT5 showed not only increased expansion and polyfunctionality but also reduced PD-1 expression, leading to decreased cellular exhaustion. In a B16F10 melanoma mouse model, our approach yielded a potent antitumor effect, with CA-STAT5 further amplifying this response. We found that CA-STAT5 improved antitumor activities, in part, by attenuating the PD-1/PD-L1 inhibitory pathway. These findings indicate that TCR-transduced CD8 T cells can undergo antigen-dependent expansion when exposed to TriVax. Additionally, the expression of CA-STAT5 enhances T cell proliferation and persistence, partly by promoting resistance to PD-1/PD-L1-mediated inhibition in antitumor T cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STAT5 激活可防止 PD-1 抑制,从而增强结合多肽疫苗的采纳疗法。
利用逆转录病毒转导的 T 细胞进行适应性细胞疗法(ACT)是一种很有前景的增强抗肿瘤反应的策略。当与多肽疫苗接种策略 TriVax 配合使用时,这种方法能协同扩大抗原特异性细胞群。STAT5 作为一种转录因子,在调节 T 细胞增殖及其向效应 T 细胞和记忆 T 细胞分化的过程中发挥着重要作用。我们的目的是探索将表达组成型活性 STAT5(CA-STAT5)的 CD8 T 细胞与疫苗联合治疗的方法。用编码小鼠 gp100 T 细胞受体(TCR)的逆转录病毒(RV)转导 CD8 T 细胞。在某些处理组中,细胞还与编码 CA-STAT5 的 RV 共同转导。我们通过流式细胞术和各种功能测试评估了转导效率和功能活性。使用 RV 转导的 CD8 T 细胞对 B16F10 肿瘤小鼠进行 ACT 治疗,然后用 TriVax 疫苗接种。我们证明 TriVax 能选择性地增强携带 gp100 特异性 TCR 的 ACT 细胞群的扩增。表达 CA-STAT5 的 T 细胞不仅增强了扩增和多功能性,还减少了 PD-1 的表达,从而降低了细胞衰竭。在 B16F10 黑色素瘤小鼠模型中,我们的方法产生了有效的抗肿瘤效果,CA-STAT5 进一步增强了这种反应。我们发现,CA-STAT5 部分通过减弱 PD-1/PD-L1 抑制途径提高了抗肿瘤活性。这些研究结果表明,TCR 转导的 CD8 T 细胞在接触 TriVax 后会发生抗原依赖性扩增。此外,CA-STAT5的表达还能增强T细胞的增殖和持久性,部分原因是它能增强抗肿瘤T细胞对PD-1/PD-L1介导的抑制的抵抗力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
期刊最新文献
Development and Characterization of a Lysosome-Targeting SLC3A2/PD-L1 Bispecific Antibody-Drug Conjugate for Enhanced Anti-Tumor Efficacy in Solid Tumors. Response to systemic therapies in patient-derived cell lines from primary and recurrent adult granulosa cell tumors. Targeting CDK7 enhances the antitumor efficacy of enzalutamide in androgen receptor-positive triple-negative breast cancer by inhibiting c-MYC-mediated tumorigenesis. STAT5 activation enhances adoptive therapy combined with peptide vaccination by preventing PD-1 inhibition. A novel designed anti-PD-L1/OX40 bispecific antibody augments both peripheral and tumor-associated immune responses for boosting anti-tumor immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1