Ruonan Wang, Andrew F Bowerman, Yinglong Chen, Lu Zheng, Renfang Shen, Barry Pogson, Ping Lan
{"title":"Ethylene modulates wheat response to phosphate deficiency.","authors":"Ruonan Wang, Andrew F Bowerman, Yinglong Chen, Lu Zheng, Renfang Shen, Barry Pogson, Ping Lan","doi":"10.1093/jxb/erae483","DOIUrl":null,"url":null,"abstract":"<p><p>Ethylene involves in the response to P deficiency in some model plants, but its relevance to wheat remains limited. Following our recent study demonstrating the role of differentially expressed genes (DEGs) encoding ethylene response factors (ERFs) in response to P starvation in wheat, this study aims to investigate the remodelling of ethylene pathway and the physiological roles of ethylene in wheat under P deficiency using transcriptome analysis and the addition of exogenous ethylene analogue ethephon or ethylene inhibitors. ERFs with at least a two-fold change upon P deficiency were biasedly enriched on chromosome 4 B. A group of genes encoding ACC synthase and ACC oxidase were upregulated under P starvation, indicating an increase in ACC and ethylene content, which was verified by biochemical measurements and gas chromatography-mass spectrometry analysis. Under P deficiency, both root and shoot biomass decreased with the application of exogenous ethephon or ethylene inhibitors, while root fork numbers and root surface area decreased upon ethephon treatment. The phosphate (Pi) concentrations in roots and old leaves increased with ethephon treatment, and it's redistribution in roots and younger leaves was altered under Pi starvation. Our findings could serve as a guideline for breeding germplasm with high Pi efficiency.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae483","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ethylene involves in the response to P deficiency in some model plants, but its relevance to wheat remains limited. Following our recent study demonstrating the role of differentially expressed genes (DEGs) encoding ethylene response factors (ERFs) in response to P starvation in wheat, this study aims to investigate the remodelling of ethylene pathway and the physiological roles of ethylene in wheat under P deficiency using transcriptome analysis and the addition of exogenous ethylene analogue ethephon or ethylene inhibitors. ERFs with at least a two-fold change upon P deficiency were biasedly enriched on chromosome 4 B. A group of genes encoding ACC synthase and ACC oxidase were upregulated under P starvation, indicating an increase in ACC and ethylene content, which was verified by biochemical measurements and gas chromatography-mass spectrometry analysis. Under P deficiency, both root and shoot biomass decreased with the application of exogenous ethephon or ethylene inhibitors, while root fork numbers and root surface area decreased upon ethephon treatment. The phosphate (Pi) concentrations in roots and old leaves increased with ethephon treatment, and it's redistribution in roots and younger leaves was altered under Pi starvation. Our findings could serve as a guideline for breeding germplasm with high Pi efficiency.
期刊介绍:
The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology.
Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.