Single-cell transcriptomics: a new frontier in plant biotechnology research.

IF 5.3 2区 生物学 Q1 PLANT SCIENCES Plant Cell Reports Pub Date : 2024-11-25 DOI:10.1007/s00299-024-03383-9
Shilpy Singh, Afsana Praveen, Namrata Dudha, Varun Kumar Sharma, Pooja Bhadrecha
{"title":"Single-cell transcriptomics: a new frontier in plant biotechnology research.","authors":"Shilpy Singh, Afsana Praveen, Namrata Dudha, Varun Kumar Sharma, Pooja Bhadrecha","doi":"10.1007/s00299-024-03383-9","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell transcriptomic techniques have ushered in a new era in plant biology, enabling detailed analysis of gene expression at the resolution of individual cells. This review delves into the transformative impact of these technologies on our understanding of plant development and their far-reaching implications for plant biotechnology. We present a comprehensive overview of the latest advancements in single-cell transcriptomics, emphasizing their application in elucidating complex cellular processes and developmental pathways in plants. By dissecting the heterogeneity of cell populations, single-cell technologies offer unparalleled insights into the intricate regulatory networks governing plant growth, differentiation, and response to environmental stimuli. This review covers the spectrum of single-cell approaches, from pioneering techniques such as single-cell RNA sequencing (scRNA-seq) to emerging methodologies that enhance resolution and accuracy. In addition to showcasing the technological innovations, we address the challenges and limitations associated with single-cell transcriptomics in plants. These include issues related to sample preparation, cell isolation, data complexity, and computational analysis. We propose strategies to mitigate these challenges, such as optimizing protocols for protoplast isolation, improving computational tools for data integration, and developing robust pipelines for data interpretation. Furthermore, we explore the practical applications of single-cell transcriptomics in plant biotechnology. These applications span from improving crop traits through precise genetic modifications to enhancing our understanding of plant-microbe interactions. The review also touches on the potential for single-cell approaches to accelerate breeding programs and contribute to sustainable agriculture. This review concludes with a forward-looking perspective on the future impact of single-cell technologies in plant research. We foresee these tools becoming essential in plant biotechnology, spurring innovations that tackle global challenges in food security and environmental sustainability. This review serves as a valuable resource for researchers, providing a roadmap from sample preparation to data analysis and highlighting the transformative potential of single-cell transcriptomics in plant biotechnology.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"43 12","pages":"294"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03383-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell transcriptomic techniques have ushered in a new era in plant biology, enabling detailed analysis of gene expression at the resolution of individual cells. This review delves into the transformative impact of these technologies on our understanding of plant development and their far-reaching implications for plant biotechnology. We present a comprehensive overview of the latest advancements in single-cell transcriptomics, emphasizing their application in elucidating complex cellular processes and developmental pathways in plants. By dissecting the heterogeneity of cell populations, single-cell technologies offer unparalleled insights into the intricate regulatory networks governing plant growth, differentiation, and response to environmental stimuli. This review covers the spectrum of single-cell approaches, from pioneering techniques such as single-cell RNA sequencing (scRNA-seq) to emerging methodologies that enhance resolution and accuracy. In addition to showcasing the technological innovations, we address the challenges and limitations associated with single-cell transcriptomics in plants. These include issues related to sample preparation, cell isolation, data complexity, and computational analysis. We propose strategies to mitigate these challenges, such as optimizing protocols for protoplast isolation, improving computational tools for data integration, and developing robust pipelines for data interpretation. Furthermore, we explore the practical applications of single-cell transcriptomics in plant biotechnology. These applications span from improving crop traits through precise genetic modifications to enhancing our understanding of plant-microbe interactions. The review also touches on the potential for single-cell approaches to accelerate breeding programs and contribute to sustainable agriculture. This review concludes with a forward-looking perspective on the future impact of single-cell technologies in plant research. We foresee these tools becoming essential in plant biotechnology, spurring innovations that tackle global challenges in food security and environmental sustainability. This review serves as a valuable resource for researchers, providing a roadmap from sample preparation to data analysis and highlighting the transformative potential of single-cell transcriptomics in plant biotechnology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞转录组学:植物生物技术研究的新前沿。
单细胞转录组技术开创了植物生物学的新纪元,能够以单个细胞为单位对基因表达进行详细分析。本综述深入探讨了这些技术对我们了解植物发育的变革性影响及其对植物生物技术的深远影响。我们全面概述了单细胞转录组学的最新进展,强调了它们在阐明植物复杂细胞过程和发育途径中的应用。通过剖析细胞群的异质性,单细胞技术可以让人们深入了解植物生长、分化和对环境刺激响应的复杂调控网络。本综述涵盖了各种单细胞方法,从单细胞 RNA 测序(scRNA-seq)等开创性技术到提高分辨率和准确性的新兴方法。除了展示技术创新之外,我们还探讨了与植物单细胞转录组学相关的挑战和局限性。其中包括与样本制备、细胞分离、数据复杂性和计算分析相关的问题。我们提出了缓解这些挑战的策略,如优化原生质体分离方案、改进数据整合计算工具以及开发强大的数据解读管道。此外,我们还探讨了单细胞转录组学在植物生物技术中的实际应用。这些应用包括通过精确的基因修饰改善作物性状,以及加强我们对植物与微生物相互作用的了解。本综述还探讨了单细胞方法在加速育种计划和促进可持续农业方面的潜力。本综述最后以前瞻性的视角探讨了单细胞技术在植物研究中的未来影响。我们预计,这些工具将成为植物生物技术的基本工具,推动创新,应对粮食安全和环境可持续性方面的全球挑战。这篇综述是研究人员的宝贵资源,提供了从样本制备到数据分析的路线图,并强调了单细胞转录组学在植物生物技术中的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
期刊最新文献
Reactive oxygen and nitrogen species in plant defense mechanisms. Single-cell transcriptomics: a new frontier in plant biotechnology research. Ectopic expression of HvbHLH132 from hulless barley reduces cold tolerance in transgenic Arabidopsis thaliana. Genome-wide association study identified BnaPAP17 genes involved in exogenous ATP utilization and regulating phosphorous content in Brassica napus. Two genes encoding a bacterial-type ABC transporter function in aluminum tolerance in soybean.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1