Microparticles Mediate Lipopolysaccharide-induced Inflammation and Chronic Pain in Mouse Model.

IF 3.3 4区 医学 Q2 NEUROSCIENCES NeuroMolecular Medicine Pub Date : 2024-11-25 DOI:10.1007/s12017-024-08809-x
Anjali Singh, Khushi, Vinod Tiwari, Alok Kumar
{"title":"Microparticles Mediate Lipopolysaccharide-induced Inflammation and Chronic Pain in Mouse Model.","authors":"Anjali Singh, Khushi, Vinod Tiwari, Alok Kumar","doi":"10.1007/s12017-024-08809-x","DOIUrl":null,"url":null,"abstract":"<p><p>Recent evidence highlights microparticles (MPs) as crucial players in intercellular communication among immune cells, yet their role in inflammation-induced chronic pain remains unexplored. In this study, we investigated the involvement of MPs in the progression of inflammation and associated pain using mouse models of chronic neuroinflammation induced by repeated intraperitoneal injections of lipopolysaccharide (LPS; 1 mg/kg for four consecutive days) in C57BL/6 mice. Chronic pain was analyzed at baseline (day 0) and on day 21 post-LPS injection using von Frey and the hot metal plate tests. We found a significant increase in the levels of proinflammatory mediators and activation of the TLR4-NFκB signaling pathways following LPS administration.  Additionally, transcriptional upregulation of chronic pain-associated TRP channels and glutamate receptors, including TRPA1, TRPM2, and mGluR2 in the cortex and hippocampus as well as mGluR5 in the cortex, was noted on day 21 post-LPS injection. Moreover, upregulation of TRPM2, mGluR2, and mGluR5 was found in the spinal cord, along with increased TRPA1 protein expression in the brain cortex. Plasma-derived MPs were isolated, revealing a significant increase in concentration 21 days after LPS injection, accompanied by TNF-α DNA encapsulation and increased TNF-α mRNA expression within MPs. Furthermore, MPs concentration positively correlated with the expression of TRPA1, TRPM2, mGluR2, and mGluR5. These findings suggest that MPs contribute to inflammation-induced chronic pain, highlighting their potential as therapeutic targets.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"26 1","pages":"48"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-024-08809-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Recent evidence highlights microparticles (MPs) as crucial players in intercellular communication among immune cells, yet their role in inflammation-induced chronic pain remains unexplored. In this study, we investigated the involvement of MPs in the progression of inflammation and associated pain using mouse models of chronic neuroinflammation induced by repeated intraperitoneal injections of lipopolysaccharide (LPS; 1 mg/kg for four consecutive days) in C57BL/6 mice. Chronic pain was analyzed at baseline (day 0) and on day 21 post-LPS injection using von Frey and the hot metal plate tests. We found a significant increase in the levels of proinflammatory mediators and activation of the TLR4-NFκB signaling pathways following LPS administration.  Additionally, transcriptional upregulation of chronic pain-associated TRP channels and glutamate receptors, including TRPA1, TRPM2, and mGluR2 in the cortex and hippocampus as well as mGluR5 in the cortex, was noted on day 21 post-LPS injection. Moreover, upregulation of TRPM2, mGluR2, and mGluR5 was found in the spinal cord, along with increased TRPA1 protein expression in the brain cortex. Plasma-derived MPs were isolated, revealing a significant increase in concentration 21 days after LPS injection, accompanied by TNF-α DNA encapsulation and increased TNF-α mRNA expression within MPs. Furthermore, MPs concentration positively correlated with the expression of TRPA1, TRPM2, mGluR2, and mGluR5. These findings suggest that MPs contribute to inflammation-induced chronic pain, highlighting their potential as therapeutic targets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微颗粒在小鼠模型中介导脂多糖诱发的炎症和慢性疼痛
最近的证据表明,微颗粒(MPs)在免疫细胞间的细胞间通信中起着至关重要的作用,但它们在炎症诱导的慢性疼痛中的作用仍未得到探讨。在这项研究中,我们使用小鼠慢性神经炎症模型,通过连续四天反复腹腔注射脂多糖(LPS;1 毫克/千克)诱导 C57BL/6 小鼠,研究了 MPs 在炎症进展和相关疼痛中的作用。在注射 LPS 后的基线(第 0 天)和第 21 天,使用 von Frey 试验和热金属板试验对慢性疼痛进行了分析。我们发现,在注射 LPS 后,促炎介质的水平和 TLR4-NFκB 信号通路的活化程度都明显增加。 此外,注射 LPS 后第 21 天,慢性疼痛相关 TRP 通道和谷氨酸受体(包括皮层和海马中的 TRPA1、TRPM2 和 mGluR2 以及皮层中的 mGluR5)转录上调。此外,在脊髓中发现了 TRPM2、mGluR2 和 mGluR5 的上调,同时在大脑皮层中发现了 TRPA1 蛋白表达的增加。分离出的血浆源性 MPs 显示,注射 LPS 21 天后,MPs 的浓度显著增加,同时 MPs 中的 TNF-α DNA 被包裹,TNF-α mRNA 表达增加。此外,MPs 的浓度与 TRPA1、TRPM2、mGluR2 和 mGluR5 的表达呈正相关。这些研究结果表明,MPs 对炎症诱导的慢性疼痛有促进作用,突出了其作为治疗靶点的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
期刊最新文献
The Peripheral Amyloid-β Nexus: Connecting Alzheimer's Disease with Atherosclerosis through Shared Pathophysiological Mechanisms. Leptin and Leptin Signaling in Multiple Sclerosis: A Narrative Review. NOTCH3 Variant Position Affects the Phenotype at the Pluripotent Stem Cell Level in CADASIL. ADAR1 Promotes NUPR1 A-to-I RNA Editing to Exacerbate Ischemic Brain Injury by Microglia Mediated Neuroinflammation. Annexin A's Life in Pan-Cancer: Especially in Glioma Immune Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1