Annexin A's Life in Pan-Cancer: Especially in Glioma Immune Cells.

IF 3.3 4区 医学 Q2 NEUROSCIENCES NeuroMolecular Medicine Pub Date : 2025-02-26 DOI:10.1007/s12017-024-08827-9
Yujing Wen, Wenhao Zhou, Zhenzhen Zhao, Didi Ma, Jian Mao, Yingjie Cai, Fugui Liu, Juan Zhou, Kun Lv, Wenchao Gu, Lan Jiang
{"title":"Annexin A's Life in Pan-Cancer: Especially in Glioma Immune Cells.","authors":"Yujing Wen, Wenhao Zhou, Zhenzhen Zhao, Didi Ma, Jian Mao, Yingjie Cai, Fugui Liu, Juan Zhou, Kun Lv, Wenchao Gu, Lan Jiang","doi":"10.1007/s12017-024-08827-9","DOIUrl":null,"url":null,"abstract":"<p><p>The Annexin A (ANXA) family plays a critical role in cancer, with particular emphasis on their prognostic significance in pan-cancer analyses and gliomas. By integrating multi-omics data from The Cancer Genome Atlas (TCGA) and single-cell sequencing analysis, we conducted a comprehensive evaluation of ANXA2 and ANXA4 to investigate their expression patterns and functional impacts across various cancers, with a focus on glioblastoma (GBM). Our analysis encompassed several key components, including literature review, identification of differentially expressed genes (DEGs) in cancer, survival analysis, co-expression studies, competing endogenous RNA networks, cellular functional analysis, tumor microenvironment response to chemotherapy, and tumor stemness. Special attention was given to glioblastoma and low-grade glioma. Notably, our findings highlighted discrepancies among the analytical tools used, underscoring the necessity of employing multiple methods for accurate identification of DEGs. Additionally, we determined that ANXA2 and ANXA4 are predominantly expressed by M2 macrophages in GBM, based on our characterization of human glioma macrophages. These results suggest a strong correlation between ANXA2 and ANXA4 expression levels and the presence of macrophages and CD4 + resting memory T cells in gliomas, offering valuable insights into the complex interplay between the ANXA family and cancer progression.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"17"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-024-08827-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Annexin A (ANXA) family plays a critical role in cancer, with particular emphasis on their prognostic significance in pan-cancer analyses and gliomas. By integrating multi-omics data from The Cancer Genome Atlas (TCGA) and single-cell sequencing analysis, we conducted a comprehensive evaluation of ANXA2 and ANXA4 to investigate their expression patterns and functional impacts across various cancers, with a focus on glioblastoma (GBM). Our analysis encompassed several key components, including literature review, identification of differentially expressed genes (DEGs) in cancer, survival analysis, co-expression studies, competing endogenous RNA networks, cellular functional analysis, tumor microenvironment response to chemotherapy, and tumor stemness. Special attention was given to glioblastoma and low-grade glioma. Notably, our findings highlighted discrepancies among the analytical tools used, underscoring the necessity of employing multiple methods for accurate identification of DEGs. Additionally, we determined that ANXA2 and ANXA4 are predominantly expressed by M2 macrophages in GBM, based on our characterization of human glioma macrophages. These results suggest a strong correlation between ANXA2 and ANXA4 expression levels and the presence of macrophages and CD4 + resting memory T cells in gliomas, offering valuable insights into the complex interplay between the ANXA family and cancer progression.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
期刊最新文献
The Peripheral Amyloid-β Nexus: Connecting Alzheimer's Disease with Atherosclerosis through Shared Pathophysiological Mechanisms. Leptin and Leptin Signaling in Multiple Sclerosis: A Narrative Review. NOTCH3 Variant Position Affects the Phenotype at the Pluripotent Stem Cell Level in CADASIL. ADAR1 Promotes NUPR1 A-to-I RNA Editing to Exacerbate Ischemic Brain Injury by Microglia Mediated Neuroinflammation. Annexin A's Life in Pan-Cancer: Especially in Glioma Immune Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1