The Biotechnological Potential of Crickets as a Sustainable Protein Source for Fishmeal Replacement in Aquafeed.

IF 2.7 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BioTech Pub Date : 2024-11-21 DOI:10.3390/biotech13040051
Aldo Fraijo-Valenzuela, Joe Luis Arias-Moscoso, Oscar Daniel García-Pérez, Libia Zulema Rodriguez-Anaya, Jose Reyes Gonzalez-Galaviz
{"title":"The Biotechnological Potential of Crickets as a Sustainable Protein Source for Fishmeal Replacement in Aquafeed.","authors":"Aldo Fraijo-Valenzuela, Joe Luis Arias-Moscoso, Oscar Daniel García-Pérez, Libia Zulema Rodriguez-Anaya, Jose Reyes Gonzalez-Galaviz","doi":"10.3390/biotech13040051","DOIUrl":null,"url":null,"abstract":"<p><p>As aquaculture production grows, so does the demand for quality and cost-effective protein sources. The cost of fishmeal (FM) has increased over the years, leading to increased production costs for formulated aquafeed. Soybean meal (SBM) is commonly used as an FM replacer in aquafeed, but anti-nutritional factors could affect the growth, nutrition, and health of aquatic organisms. Cricket meal (CM) is an alternative source with a nutrient profile comparable to FM due to its high protein content, digestibility, and amino acid profile. CM use in aquafeed influences growth and reproductive performance while modulating the gut microbiota and immune response of fish and shrimp. However, consistent regulation and scaling up are necessary for competitive prices and the marketing of CM. Moreover, the chitin content in CM could be an issue in some fish species; however, different strategies based on food biotechnology can improve the protein quality for its safe use in aquafeed.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"13 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587023/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biotech13040051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

As aquaculture production grows, so does the demand for quality and cost-effective protein sources. The cost of fishmeal (FM) has increased over the years, leading to increased production costs for formulated aquafeed. Soybean meal (SBM) is commonly used as an FM replacer in aquafeed, but anti-nutritional factors could affect the growth, nutrition, and health of aquatic organisms. Cricket meal (CM) is an alternative source with a nutrient profile comparable to FM due to its high protein content, digestibility, and amino acid profile. CM use in aquafeed influences growth and reproductive performance while modulating the gut microbiota and immune response of fish and shrimp. However, consistent regulation and scaling up are necessary for competitive prices and the marketing of CM. Moreover, the chitin content in CM could be an issue in some fish species; however, different strategies based on food biotechnology can improve the protein quality for its safe use in aquafeed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蟋蟀作为水产饲料中鱼粉替代品的可持续蛋白质来源的生物技术潜力。
随着水产养殖产量的增长,对优质、经济的蛋白质来源的需求也在增加。鱼粉(FM)的成本逐年增加,导致配方水产饲料的生产成本上升。豆粕(SBM)通常用作水产饲料中的鱼粉替代品,但抗营养因素会影响水生生物的生长、营养和健康。蟋蟀粉(CM)是一种替代来源,由于其蛋白质含量高、消化率高、氨基酸含量高,其营养成分可与饲料粉媲美。在水产饲料中使用蟋蟀粉可影响鱼虾的生长和繁殖性能,同时调节鱼虾的肠道微生物群和免疫反应。然而,要使 CM 的价格和销售具有竞争力,就必须进行持续监管和扩大规模。此外,中药中的甲壳素含量对某些鱼类可能是个问题;不过,基于食品生物技术的不同策略可提高蛋白质质量,使其安全用于水产饲料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BioTech
BioTech Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.70
自引率
0.00%
发文量
51
审稿时长
11 weeks
期刊最新文献
Discovery of Innate Immune Response mRNAs That Are Impacted by Structure-Specific Oral Baker's Yeast Beta Glucan Consumption. Impact of GAUT1 Gene Knockout on Cell Aggregation in Arabidopsis thaliana Suspension Culture. Current Approaches for Genetic Manipulation of Streptomyces spp.-Key Bacteria for Biotechnology and Environment. Peptide Inhibitor Assay for Allocating Functionally Important Accessible Sites Throughout a Protein Chain: Restriction Endonuclease EcoRI as a Model Protein System. The Effects of the Combined Co-Expression of GroEL/ES and Trigger Factor Chaperones on Orthopoxvirus Phospholipase F13 Production in E. coli.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1