Manipulating C-C coupling pathway in electrochemical CO2 reduction for selective ethylene and ethanol production over single-atom alloy catalyst

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-26 DOI:10.1038/s41467-024-54636-w
Shifu Wang, Fuhua Li, Jian Zhao, Yaqiong Zeng, Yifan Li, Zih-Yi Lin, Tsung-Ju Lee, Shuhui Liu, Xinyi Ren, Weijue Wang, Yusen Chen, Sung-Fu Hung, Ying-Rui Lu, Yi Cui, Xiaofeng Yang, Xuning Li, Yanqiang Huang, Bin Liu
{"title":"Manipulating C-C coupling pathway in electrochemical CO2 reduction for selective ethylene and ethanol production over single-atom alloy catalyst","authors":"Shifu Wang, Fuhua Li, Jian Zhao, Yaqiong Zeng, Yifan Li, Zih-Yi Lin, Tsung-Ju Lee, Shuhui Liu, Xinyi Ren, Weijue Wang, Yusen Chen, Sung-Fu Hung, Ying-Rui Lu, Yi Cui, Xiaofeng Yang, Xuning Li, Yanqiang Huang, Bin Liu","doi":"10.1038/s41467-024-54636-w","DOIUrl":null,"url":null,"abstract":"<p>Manipulation C-C coupling pathway is of great importance for selective CO<sub>2</sub> electroreduction but remain challenging. Herein, two model Cu-based catalysts, by modifying Cu nanowires with Ag nanoparticles (AgCu NW) and Ag single atoms (Ag<sub>1</sub>Cu NW), respectively, are rationally designed for exploring the C-C coupling mechanisms in electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). Compared to AgCu NW, the Ag<sub>1</sub>Cu NW exhibits a more than 10-fold increase of C<sub>2</sub> selectivity in CO<sub>2</sub> reduction to ethanol, with ethanol-to-ethylene ratio increased from 0.41 over AgCu NW to 4.26 over Ag<sub>1</sub>Cu NW. Via a variety of o<i>perando</i>/in-situ techniques and theoretical calculation, the enhanced ethanol selectivity over Ag<sub>1</sub>Cu NW is attributed to the promoted H<sub>2</sub>O dissociation over the atomically dispersed Ag sites, which effectively accelerated *CO hydrogenation to form *CHO intermediate and facilitated asymmetric *CO-*CHO coupling over paired Cu atoms adjacent to single Ag atoms. Results of this work provide deep insight into the C-C coupling pathways towards target C<sub>2+</sub> product and shed light on the rational design of efficient CO<sub>2</sub>RR catalysts with paired active sites.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"256 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54636-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Manipulation C-C coupling pathway is of great importance for selective CO2 electroreduction but remain challenging. Herein, two model Cu-based catalysts, by modifying Cu nanowires with Ag nanoparticles (AgCu NW) and Ag single atoms (Ag1Cu NW), respectively, are rationally designed for exploring the C-C coupling mechanisms in electrochemical CO2 reduction reaction (CO2RR). Compared to AgCu NW, the Ag1Cu NW exhibits a more than 10-fold increase of C2 selectivity in CO2 reduction to ethanol, with ethanol-to-ethylene ratio increased from 0.41 over AgCu NW to 4.26 over Ag1Cu NW. Via a variety of operando/in-situ techniques and theoretical calculation, the enhanced ethanol selectivity over Ag1Cu NW is attributed to the promoted H2O dissociation over the atomically dispersed Ag sites, which effectively accelerated *CO hydrogenation to form *CHO intermediate and facilitated asymmetric *CO-*CHO coupling over paired Cu atoms adjacent to single Ag atoms. Results of this work provide deep insight into the C-C coupling pathways towards target C2+ product and shed light on the rational design of efficient CO2RR catalysts with paired active sites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在单原子合金催化剂上操纵电化学二氧化碳还原过程中的 C-C 偶联途径以选择性生产乙烯和乙醇
操纵 C-C 偶联途径对选择性二氧化碳电还原具有重要意义,但仍然具有挑战性。本文通过在铜纳米线上分别添加Ag纳米颗粒(AgCu NW)和Ag单原子(Ag1Cu NW),合理设计了两种模型铜基催化剂,用于探索电化学二氧化碳还原反应(CO2RR)中的C-C耦合机制。与 AgCu NW 相比,Ag1Cu NW 在 CO2 还原成乙醇过程中的 C2 选择性提高了 10 倍以上,乙醇乙烯比从 AgCu NW 的 0.41 提高到 Ag1Cu NW 的 4.26。通过多种操作/原位技术和理论计算,Ag1Cu NW 的乙醇选择性增强归因于原子分散的 Ag 位点促进了 H2O 解离,从而有效地加速了 *CO 加氢形成 *CHO 中间体,并促进了与单个 Ag 原子相邻的成对 Cu 原子上的不对称 *CO-*CHO 耦合。这项工作的结果深入揭示了通向目标 C2+ 产物的 C-C 偶联途径,并为合理设计具有成对活性位点的高效 CO2RR 催化剂提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: CryoET reveals actin filaments within platelet microtubules Plasma membrane remodeling determines adipocyte expansion and mechanical adaptability Measuring competing outcomes of a single-molecule reaction reveals classical Arrhenius chemical kinetics Late-stage (radio)fluorination of alkyl phosphonates via electrophilic activation A massively parallel reporter assay library to screen short synthetic promoters in mammalian cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1