UNet-Att: a self-supervised denoising and recovery model for two-photon microscopic image

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2024-11-26 DOI:10.1007/s40747-024-01633-7
Yuer Lu, Yongfa Ying, Chen Lin, Yan Wang, Jun Jin, Xiaoming Jiang, Jianwei Shuai, Xiang Li, Jinjin Zhong
{"title":"UNet-Att: a self-supervised denoising and recovery model for two-photon microscopic image","authors":"Yuer Lu, Yongfa Ying, Chen Lin, Yan Wang, Jun Jin, Xiaoming Jiang, Jianwei Shuai, Xiang Li, Jinjin Zhong","doi":"10.1007/s40747-024-01633-7","DOIUrl":null,"url":null,"abstract":"<p>Two-photon microscopy is indispensable in cell and molecular biology for its high-resolution visualization of cellular and molecular dynamics. However, the inevitable low signal-to-noise conditions significantly degrade image quality, obscuring essential details and complicating morphological analysis. While existing denoising methods such as CNNs, Noise2Noise, and DeepCAD serve broad applications in imaging, they still have limitations in preserving texture structures and fine details in two-photon microscopic images affected by complex noise, particularly in sophisticated structures like neuronal synapses. To improve two-photon microscopy image denoising effectiveness, by experimenting on real two-photon microscopy images, we propose a novel deep learning framework, the UNet-Att model, which integrates a specifically tailored UNet++ architecture with attention mechanisms. Specifically, this approach consists of a sophisticated downsampling module for extracting hierarchical features at varied scales, and an innovative attention module that strategically emphasizes salient features during the integration process. The architecture is completed by an ingenious upsampling pathway that reconstructs the image with high fidelity, ensuring the retention of textural integrity. Additionally, the model supports end-to-end training, optimizing its denoising efficacy. The UNet-Att model proves to surpass mainstream algorithms in the dual objectives of denoising and preserving the textural intricacies of original images, which is evidenced by an increase of 9.42 dB in the high Peak Signal-to-Noise Ratio (PSNR) coupled with an improvement of 0.1131 in the Structural Similarity Index Measurement (SSIM). The ablation experiments reveal the effectiveness of each module. The associated Python packages and datasets of UNet-Att are freely available at https://github.com/ZjjDh/UNet-Att.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"24 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01633-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Two-photon microscopy is indispensable in cell and molecular biology for its high-resolution visualization of cellular and molecular dynamics. However, the inevitable low signal-to-noise conditions significantly degrade image quality, obscuring essential details and complicating morphological analysis. While existing denoising methods such as CNNs, Noise2Noise, and DeepCAD serve broad applications in imaging, they still have limitations in preserving texture structures and fine details in two-photon microscopic images affected by complex noise, particularly in sophisticated structures like neuronal synapses. To improve two-photon microscopy image denoising effectiveness, by experimenting on real two-photon microscopy images, we propose a novel deep learning framework, the UNet-Att model, which integrates a specifically tailored UNet++ architecture with attention mechanisms. Specifically, this approach consists of a sophisticated downsampling module for extracting hierarchical features at varied scales, and an innovative attention module that strategically emphasizes salient features during the integration process. The architecture is completed by an ingenious upsampling pathway that reconstructs the image with high fidelity, ensuring the retention of textural integrity. Additionally, the model supports end-to-end training, optimizing its denoising efficacy. The UNet-Att model proves to surpass mainstream algorithms in the dual objectives of denoising and preserving the textural intricacies of original images, which is evidenced by an increase of 9.42 dB in the high Peak Signal-to-Noise Ratio (PSNR) coupled with an improvement of 0.1131 in the Structural Similarity Index Measurement (SSIM). The ablation experiments reveal the effectiveness of each module. The associated Python packages and datasets of UNet-Att are freely available at https://github.com/ZjjDh/UNet-Att.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UNet-Att:双光子显微图像的自监督去噪和恢复模型
双光子显微镜能高分辨率地观察细胞和分子的动态变化,是细胞和分子生物学中不可或缺的技术。然而,不可避免的低信噪比条件会大大降低图像质量,掩盖重要细节,使形态分析变得复杂。虽然现有的去噪方法(如 CNN、Noise2Noise 和 DeepCAD)在成像领域应用广泛,但它们在保留受复杂噪声影响的双光子显微图像中的纹理结构和精细细节方面仍有局限性,尤其是在神经元突触等复杂结构中。为了提高双光子显微图像的去噪效果,我们通过对真实双光子显微图像的实验,提出了一种新的深度学习框架--UNet-Att 模型,它将专门定制的 UNet++ 架构与注意力机制整合在一起。具体来说,这种方法由一个复杂的下采样模块和一个创新的注意力模块组成,前者用于提取不同尺度的分层特征,后者则在整合过程中战略性地强调突出特征。该架构由一个巧妙的上采样路径完成,该路径可高保真地重建图像,确保纹理的完整性。此外,该模型还支持端到端训练,优化了去噪效果。事实证明,UNet-Att 模型在去噪和保留原始图像纹理复杂性的双重目标上超越了主流算法,这体现在峰值信噪比(PSNR)提高了 9.42 dB,结构相似性指数测量(SSIM)提高了 0.1131。消融实验显示了每个模块的有效性。UNet-Att 的相关 Python 包和数据集可在 https://github.com/ZjjDh/UNet-Att 免费获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Quality assessment of cyber threat intelligence knowledge graph based on adaptive joining of embedding model Spectral-energy efficiency tradeoff of massive MIMO by a constrained large-scale multi-objective algorithm through decision transfer DR-Z2AN: dual-recurrent neural network with a tri-channel attention mechanism for financial management prediction UNet-Att: a self-supervised denoising and recovery model for two-photon microscopic image FL-Joint: joint aligning features and labels in federated learning for data heterogeneity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1