SNNOT: Spiking Neural Network With On-Chip Training for MIMO-OFDM Symbol Detection

IF 5.3 2区 计算机科学 Q1 TELECOMMUNICATIONS IEEE Transactions on Green Communications and Networking Pub Date : 2024-04-25 DOI:10.1109/TGCN.2024.3393854
Honghao Zheng;Jiarui Xu;Lingjia Liu;Yang Yi
{"title":"SNNOT: Spiking Neural Network With On-Chip Training for MIMO-OFDM Symbol Detection","authors":"Honghao Zheng;Jiarui Xu;Lingjia Liu;Yang Yi","doi":"10.1109/TGCN.2024.3393854","DOIUrl":null,"url":null,"abstract":"Advancing 5G and beyond communications require innovative solutions for symbol detection in MIMO-OFDM. Our research leverages Spiking Neural Networks (SNNs), surpassing the efficiency of traditional Deep Neural Networks (DNNs) and Artificial Neural Networks (ANNs) in dynamic wireless contexts. The SNNOT architecture features a novel triplet Spike-Timing-Dependent Plasticity (STDP) learning circuit, utilizing 22FDX technology from GlobalFoundries, which overcomes STDP’s supervised learning limitations and enhances dynamic learning by converting spikes into voltages. This innovation leads to substantial efficiency gains, with a minimal energy requirement of \n<inline-formula> <tex-math>$20.92 \\mu W$ </tex-math></inline-formula>\n and a small silicon footprint of \n<inline-formula> <tex-math>$37 \\times 62 \\mu m^{2}$ </tex-math></inline-formula>\n. Performance evaluations show the triplet STDP rule in SNNOT considerably improves image classification and symbol detection, with over 3% error rate reduction in MNIST and CIFAR-10. Additionally, it achieves a 0.07 symbol error rate (SER) at 5 dB \n<inline-formula> <tex-math>$E_{b}/N_{o}$ </tex-math></inline-formula>\n in 4 pulse amplitude modulation (4-PAM) Gaussian channel symbol detection, outperforming other methods. With 8-PAM, it surpasses other methods by at least 0.03 SER and maintains lower or comparable SERs in scenarios using the WINNER II channel model and 16 quadrature amplitude modulation (16-QAM). Importantly, our method offers up to 32% faster processing, providing a potent, efficient solution for receiver processing in cutting-edge wireless systems.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 4","pages":"1809-1823"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10508571/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Advancing 5G and beyond communications require innovative solutions for symbol detection in MIMO-OFDM. Our research leverages Spiking Neural Networks (SNNs), surpassing the efficiency of traditional Deep Neural Networks (DNNs) and Artificial Neural Networks (ANNs) in dynamic wireless contexts. The SNNOT architecture features a novel triplet Spike-Timing-Dependent Plasticity (STDP) learning circuit, utilizing 22FDX technology from GlobalFoundries, which overcomes STDP’s supervised learning limitations and enhances dynamic learning by converting spikes into voltages. This innovation leads to substantial efficiency gains, with a minimal energy requirement of $20.92 \mu W$ and a small silicon footprint of $37 \times 62 \mu m^{2}$ . Performance evaluations show the triplet STDP rule in SNNOT considerably improves image classification and symbol detection, with over 3% error rate reduction in MNIST and CIFAR-10. Additionally, it achieves a 0.07 symbol error rate (SER) at 5 dB $E_{b}/N_{o}$ in 4 pulse amplitude modulation (4-PAM) Gaussian channel symbol detection, outperforming other methods. With 8-PAM, it surpasses other methods by at least 0.03 SER and maintains lower or comparable SERs in scenarios using the WINNER II channel model and 16 quadrature amplitude modulation (16-QAM). Importantly, our method offers up to 32% faster processing, providing a potent, efficient solution for receiver processing in cutting-edge wireless systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SNNOT:用于 MIMO-OFDM 符号检测的片上训练尖峰神经网络
5G 及更先进的通信技术需要创新的 MIMO-OFDM 符号检测解决方案。我们的研究利用尖峰神经网络(SNN),在动态无线环境中超越了传统深度神经网络(DNN)和人工神经网络(ANN)的效率。SNNOT 架构采用新颖的三重尖峰计时可塑性(STDP)学习电路,利用 GlobalFoundries 的 22FDX 技术,克服了 STDP 监督学习的局限性,并通过将尖峰转换为电压来增强动态学习。这一创新带来了显著的效率提升,最低能耗要求仅为 20.92 \mu W$,硅足迹仅为 37 \times 62 \mu m^{2}$。性能评估结果表明,SNNOT 中的三重 STDP 规则大大提高了图像分类和符号检测能力,在 MNIST 和 CIFAR-10 中的错误率降低了 3% 以上。此外,在 4 脉冲振幅调制(4-PAM)高斯信道符号检测中,它在 5 dB $E_{b}/N_{o}$ 条件下实现了 0.07 的符号错误率(SER),优于其他方法。使用 8-PAM 时,它的 SER 值至少比其他方法高出 0.03,在使用 WINNER II 信道模型和 16 正交振幅调制(16-QAM)的情况下,它的 SER 值更低或与之相当。重要的是,我们的方法可将处理速度提高 32%,为尖端无线系统中的接收器处理提供了有力、高效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Green Communications and Networking
IEEE Transactions on Green Communications and Networking Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
6.20%
发文量
181
期刊最新文献
2024 Index IEEE Transactions on Green Communications and Networking Vol. 8 Table of Contents Guest Editorial Special Issue on Rate-Splitting Multiple Access for Future Green Communication Networks IEEE Transactions on Green Communications and Networking IEEE Communications Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1