{"title":"Mitigating Catastrophic Forgetting in Cross-Domain Fault Diagnosis: An Unsupervised Class Incremental Learning Network Approach","authors":"Yifan Zhan;Rui Yang;Yong Zhang;Zidong Wang","doi":"10.1109/TIM.2024.3500047","DOIUrl":null,"url":null,"abstract":"While deep learning has found widespread application in fault diagnosis, it continues to face three primary challenges. First, it assumes that training and test datasets adhere to the same distribution, which is often not the case in industries with varying conditions. Second, it relies heavily on the availability of abundant labeled data for training, overlooking the reality that newly collected data are frequently unlabeled. Third, neural networks frequently encounter catastrophic forgetting, a critical concern in dynamic industrial settings with emerging faults. Therefore, this article proposes an unsupervised class incremental learning network (UCILN), to mitigate catastrophic forgetting in cross-domain fault diagnosis, particularly in situations where the target domain lacks labeled data. A memory module and a semifrozen and semiupdated incremental strategy are designed to balance the retention of old knowledge with the acquisition of new information. Test results obtained from the Case Western Reserve University (CWRU) and Paderborn University (PU) datasets demonstrate the exceptional performance of UCILN.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-14"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10755106/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
While deep learning has found widespread application in fault diagnosis, it continues to face three primary challenges. First, it assumes that training and test datasets adhere to the same distribution, which is often not the case in industries with varying conditions. Second, it relies heavily on the availability of abundant labeled data for training, overlooking the reality that newly collected data are frequently unlabeled. Third, neural networks frequently encounter catastrophic forgetting, a critical concern in dynamic industrial settings with emerging faults. Therefore, this article proposes an unsupervised class incremental learning network (UCILN), to mitigate catastrophic forgetting in cross-domain fault diagnosis, particularly in situations where the target domain lacks labeled data. A memory module and a semifrozen and semiupdated incremental strategy are designed to balance the retention of old knowledge with the acquisition of new information. Test results obtained from the Case Western Reserve University (CWRU) and Paderborn University (PU) datasets demonstrate the exceptional performance of UCILN.
期刊介绍:
Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.