Variable Step-Size Diffusion Bias-Compensated APV Algorithm Over Networks

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal and Information Processing over Networks Pub Date : 2024-11-11 DOI:10.1109/TSIPN.2024.3496255
Fuyi Huang;Shuting Yang;Sheng Zhang;Haiqiang Chen;Pengwei Wen
{"title":"Variable Step-Size Diffusion Bias-Compensated APV Algorithm Over Networks","authors":"Fuyi Huang;Shuting Yang;Sheng Zhang;Haiqiang Chen;Pengwei Wen","doi":"10.1109/TSIPN.2024.3496255","DOIUrl":null,"url":null,"abstract":"This paper investigates the distributed estimation problem over networks with highly correlated and noisy inputs. As a first step, this paper proposes an algorithm based on diffusion affine projection Versoria (APV) that can process highly correlated input signals over networks. Following that, the optimal step-size is derived by minimizing the mean-square deviation at each node, so that the tradeoff between convergence rate and steady-state error can be addressed. To reduce estimation bias caused by input noise, two diffusion bias-compensated APV (DBCAPV) algorithms are then developed by solving the asymptotic unbiasedness or local constrained optimization problems. Using the optimal step-size processed through the moving average and reset mechanisms, two variable step-size DBCAPV algorithms are obtained. The simulation results demonstrate that our methods are effective.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"894-904"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750223/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the distributed estimation problem over networks with highly correlated and noisy inputs. As a first step, this paper proposes an algorithm based on diffusion affine projection Versoria (APV) that can process highly correlated input signals over networks. Following that, the optimal step-size is derived by minimizing the mean-square deviation at each node, so that the tradeoff between convergence rate and steady-state error can be addressed. To reduce estimation bias caused by input noise, two diffusion bias-compensated APV (DBCAPV) algorithms are then developed by solving the asymptotic unbiasedness or local constrained optimization problems. Using the optimal step-size processed through the moving average and reset mechanisms, two variable step-size DBCAPV algorithms are obtained. The simulation results demonstrate that our methods are effective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Signal and Information Processing over Networks
IEEE Transactions on Signal and Information Processing over Networks Computer Science-Computer Networks and Communications
CiteScore
5.80
自引率
12.50%
发文量
56
期刊介绍: The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.
期刊最新文献
Multi-Bit Distributed Detection of Sparse Stochastic Signals Over Error-Prone Reporting Channels Variable Step-Size Diffusion Bias-Compensated APV Algorithm Over Networks Reinforcement Learning-Based Event-Triggered Constrained Containment Control for Perturbed Multiagent Systems Finite-Time Performance Mask Function-Based Distributed Privacy-Preserving Consensus: Case Study on Optimal Dispatch of Energy System Discrete-Time Controllability of Cartesian Product Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1