FBSE-Based Approach for Discriminating Seizure and Normal EEG Signals

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-11-07 DOI:10.1109/LSENS.2024.3493253
Dhanhanjay Pachori;Tapan Kumar Gandhi
{"title":"FBSE-Based Approach for Discriminating Seizure and Normal EEG Signals","authors":"Dhanhanjay Pachori;Tapan Kumar Gandhi","doi":"10.1109/LSENS.2024.3493253","DOIUrl":null,"url":null,"abstract":"This letter presents an innovative approach based on Fourier–Bessel series expansion (FBSE) in order to identify seizure and normal electroencephalogram (EEG) signals. The different set of FBSE coefficients are used to separate the five EEG rhythms, namely, delta, theta, alpha, beta, and gamma rhythms. Further, images are generated from the matrices obtained after applying the concept of Euclidean distance on the EEG rhythms. The generated images are employed as features for the classification using convolutional neural network. Notably, our proposed methodology achieves 100% accuracy in distinguishing between seizure and normal EEG signals on the publicly available Bonn University EEG database. This robust performance demonstrates the efficacy of our approach in handling complicated EEG signal patterns. The proposed framework for automated classification of epileptic seizure based on EEG rhythms provides information about the behavior of rhythms during epilepsy. The experimental results on the publicly available Bonn University EEG database show the effectiveness of proposed framework. The performance of the proposed framework is also compared with the other existing frameworks from the literature.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10746605/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents an innovative approach based on Fourier–Bessel series expansion (FBSE) in order to identify seizure and normal electroencephalogram (EEG) signals. The different set of FBSE coefficients are used to separate the five EEG rhythms, namely, delta, theta, alpha, beta, and gamma rhythms. Further, images are generated from the matrices obtained after applying the concept of Euclidean distance on the EEG rhythms. The generated images are employed as features for the classification using convolutional neural network. Notably, our proposed methodology achieves 100% accuracy in distinguishing between seizure and normal EEG signals on the publicly available Bonn University EEG database. This robust performance demonstrates the efficacy of our approach in handling complicated EEG signal patterns. The proposed framework for automated classification of epileptic seizure based on EEG rhythms provides information about the behavior of rhythms during epilepsy. The experimental results on the publicly available Bonn University EEG database show the effectiveness of proposed framework. The performance of the proposed framework is also compared with the other existing frameworks from the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 FBSE 的癫痫发作与正常脑电信号鉴别方法
这封信提出了一种基于傅立叶-贝塞尔数列展开(FBSE)的创新方法,用于识别癫痫发作和正常脑电图(EEG)信号。不同的 FBSE 系数集用于分离五种脑电图节律,即 delta、theta、alpha、beta 和 gamma 节律。此外,在脑电图节律上应用欧氏距离概念后得到的矩阵会生成图像。生成的图像被用作使用卷积神经网络进行分类的特征。值得注意的是,我们提出的方法在波恩大学公开的脑电图数据库中区分癫痫发作和正常脑电图信号的准确率达到了 100%。这种稳健的表现证明了我们的方法在处理复杂脑电信号模式时的有效性。所提出的基于脑电图节律的癫痫发作自动分类框架提供了有关癫痫期间节律行为的信息。在公开的波恩大学脑电图数据库上的实验结果表明了所提框架的有效性。此外,还将拟议框架的性能与文献中的其他现有框架进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Table of Contents Front Cover IEEE Sensors Council Information IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1