Maria Cecilia D. Salangsang, Mutsumi Sekine, Shin-ichi Akizuki, Pranshu Bhatia, Tatsuki Toda
{"title":"pH Adjustment Alleviates Ammonia Inhibition of Cell Proliferation During a Short Resting Period in Semi-continuous Anaerobic Digestion of Food Waste","authors":"Maria Cecilia D. Salangsang, Mutsumi Sekine, Shin-ichi Akizuki, Pranshu Bhatia, Tatsuki Toda","doi":"10.1007/s12155-024-10804-w","DOIUrl":null,"url":null,"abstract":"<div><p>During the anaerobic digestion (AD) of food waste, the deliberate secession of substrate rapidly increases the microbial cell population, which can reach a maximum in 2–3 d. During short-term resting (STR), an increase in free NH<sub>3</sub> due to an increase in pH is a key inhibitor of cell proliferation; therefore, cell growth would be further promoted if free NH<sub>3</sub> was reduced. To explore adopting an STR technique to increase microbial cells in the AD of organic waste, we attempted to reduce free NH<sub>3</sub> by controlling the pH in the reactors. Two semi-continuously treated reactors were fed with food waste at a loading rate of 3.0 g-VS/L/d for 40 days and then the feeding was stopped in both reactors until day 47. One of the reactors was maintained at pH 7.37 ± 0.03, whereas pH was not controlled in the other. During STR, the cell density in the pH-controlled condition reached a maximum of 7.48 × 10<sup>10</sup> cells/mL, which was twice as high as that before STR, and 1.7-times higher than that in the non-pH-controlled condition. These results demonstrated that mitigating NH<sub>3</sub> using pH can affect cell proliferation during STR.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"18 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-024-10804-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
During the anaerobic digestion (AD) of food waste, the deliberate secession of substrate rapidly increases the microbial cell population, which can reach a maximum in 2–3 d. During short-term resting (STR), an increase in free NH3 due to an increase in pH is a key inhibitor of cell proliferation; therefore, cell growth would be further promoted if free NH3 was reduced. To explore adopting an STR technique to increase microbial cells in the AD of organic waste, we attempted to reduce free NH3 by controlling the pH in the reactors. Two semi-continuously treated reactors were fed with food waste at a loading rate of 3.0 g-VS/L/d for 40 days and then the feeding was stopped in both reactors until day 47. One of the reactors was maintained at pH 7.37 ± 0.03, whereas pH was not controlled in the other. During STR, the cell density in the pH-controlled condition reached a maximum of 7.48 × 1010 cells/mL, which was twice as high as that before STR, and 1.7-times higher than that in the non-pH-controlled condition. These results demonstrated that mitigating NH3 using pH can affect cell proliferation during STR.
期刊介绍:
BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.