Debashis Mohanty, Ganeswar Mahanta, Sachin Shaw, Ramesh Katta
{"title":"Entropy and thermal performance on shape-based 3D tri-hybrid nanofluid flow due to a rotating disk with statistical analysis","authors":"Debashis Mohanty, Ganeswar Mahanta, Sachin Shaw, Ramesh Katta","doi":"10.1007/s10973-024-13592-9","DOIUrl":null,"url":null,"abstract":"<div><p>Fluid flow across a rotating disk has significant technical and industrial applications, including rotors, turbines, fans, centrifugal pumps, spinning disks, viscometers, etc. The impact of different-shaped nanoparticles immersed in the fluid controlled the thermophysical characteristics of the fluid, which were utilized in several sectors to accelerate thermal advancement. In the present problem, the tri-hybrid nanofluid flows over a rotating disk with three different shapes, namely spherical, cylindrical, and platelets, respectively, for <i>Al</i><sub><i>2</i></sub><i>O</i><sub><i>3</i></sub>, multi-layered carbon nanotubes, and graphene nanoparticles immersed in the base fluid water. Under convective conditions, the tri nanofluid’s thermal expansion is more significant when combined with Joule heating, Cattaneo-Christov heat flux, and nonlinear thermal radiation. The Galerkin Finite Element Method is used to solve the simplified form of PDEs after a similarity transformation is introduced to convert them into ODEs. The skin friction coefficient and the heat transfer rate are subjected to a quadratic regression analysis; the results are shown in tables. Compared to the base fluid, the Nusselt number reveals an improvement of around 5.72% for nanofluid, 7.35% for hybrid nanofluid, and 17.18% for tri-hybrid nanofluid when the strength of radiation parameter and Brinkman number is raised. Platelet-shaped nanoparticles observed a significant tendency to enhance the rate of heat transfer, which is more prominent for the tri-hybrid nanofluid than the hybrid and mono nanofluids. Each graph features a comparison of ternary hybrid, hybrid, and mono nanofluid with other significant physical parameters. It was noted that the entropy of the system significantly intensified with Reynolds number and temperature ratio, while it was controlled by radiation parameters. The uses of ternary nanofluids include energy storage devices, adsorbents, sensors, imaging, catalysts, therapeutic activity, and more.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 21","pages":"12285 - 12306"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13592-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fluid flow across a rotating disk has significant technical and industrial applications, including rotors, turbines, fans, centrifugal pumps, spinning disks, viscometers, etc. The impact of different-shaped nanoparticles immersed in the fluid controlled the thermophysical characteristics of the fluid, which were utilized in several sectors to accelerate thermal advancement. In the present problem, the tri-hybrid nanofluid flows over a rotating disk with three different shapes, namely spherical, cylindrical, and platelets, respectively, for Al2O3, multi-layered carbon nanotubes, and graphene nanoparticles immersed in the base fluid water. Under convective conditions, the tri nanofluid’s thermal expansion is more significant when combined with Joule heating, Cattaneo-Christov heat flux, and nonlinear thermal radiation. The Galerkin Finite Element Method is used to solve the simplified form of PDEs after a similarity transformation is introduced to convert them into ODEs. The skin friction coefficient and the heat transfer rate are subjected to a quadratic regression analysis; the results are shown in tables. Compared to the base fluid, the Nusselt number reveals an improvement of around 5.72% for nanofluid, 7.35% for hybrid nanofluid, and 17.18% for tri-hybrid nanofluid when the strength of radiation parameter and Brinkman number is raised. Platelet-shaped nanoparticles observed a significant tendency to enhance the rate of heat transfer, which is more prominent for the tri-hybrid nanofluid than the hybrid and mono nanofluids. Each graph features a comparison of ternary hybrid, hybrid, and mono nanofluid with other significant physical parameters. It was noted that the entropy of the system significantly intensified with Reynolds number and temperature ratio, while it was controlled by radiation parameters. The uses of ternary nanofluids include energy storage devices, adsorbents, sensors, imaging, catalysts, therapeutic activity, and more.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.