{"title":"Structural Changes in Manganese Oxides on Zeolite Y in Benzene Oxidation with Ozone and Post-Heat Treatment","authors":"Xuerui Zheng, Hisahiro Einaga","doi":"10.1007/s10562-024-04836-2","DOIUrl":null,"url":null,"abstract":"<div><p>MnO<sub>X</sub> supported on a zeolite Y catalyst (MnO<sub>X</sub>/Y) is widely utilized for the removal of volatile organic compounds (VOCs), providing an understanding of catalyst structural changes and the factors influencing these changes. This study introduces a heat treatment method to recover the catalyst. The efficacy of the treated catalysts in enhancing the oxidation of benzene by ozone was improved. Investigation of the behavior of catalysts prepared from acetate and nitrate precursors revealed a common trend: MnO<sub>X</sub> in the catalysts was readily reduced to MnO by intermediate products, acids, aldehydes, and phenols formed during the benzene ozonation process, as evidenced by X-ray absorption fine structure temperature-programmed reduction and in situ Fourier-transform infrared spectroscopy analyses. Heat treatment at 200 °C was found to be insufficient for the restoration of the MnO<sub>X</sub> structure, which was attributed to the persistence of acids and hydrocarbons within the catalyst. 500 °C was determined to be more appropriate for the regeneration of the used catalysts, indicating the critical role of the heat treatment conditions in maintaining the effectiveness of the MnO<sub>X</sub>/Y catalysts in VOC removal applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":"155 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04836-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
MnOX supported on a zeolite Y catalyst (MnOX/Y) is widely utilized for the removal of volatile organic compounds (VOCs), providing an understanding of catalyst structural changes and the factors influencing these changes. This study introduces a heat treatment method to recover the catalyst. The efficacy of the treated catalysts in enhancing the oxidation of benzene by ozone was improved. Investigation of the behavior of catalysts prepared from acetate and nitrate precursors revealed a common trend: MnOX in the catalysts was readily reduced to MnO by intermediate products, acids, aldehydes, and phenols formed during the benzene ozonation process, as evidenced by X-ray absorption fine structure temperature-programmed reduction and in situ Fourier-transform infrared spectroscopy analyses. Heat treatment at 200 °C was found to be insufficient for the restoration of the MnOX structure, which was attributed to the persistence of acids and hydrocarbons within the catalyst. 500 °C was determined to be more appropriate for the regeneration of the used catalysts, indicating the critical role of the heat treatment conditions in maintaining the effectiveness of the MnOX/Y catalysts in VOC removal applications.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.