{"title":"Scaling of Europium Vapor Laser","authors":"A. G. Filonov, D. V. Shiyanov, M. V. Trigub","doi":"10.1134/S1024856024700775","DOIUrl":null,"url":null,"abstract":"<p>IR lasers are widely used in various fields of science and technology. In this regard, expanding the spectral range and obtaining effective lasing in the IR is an urgent task. The object of our study is an self-terminating Eu laser radiating at a wavelength of 1.76 μm. We study a possibility of increasing the output parameters of this laser by elongating the active zone of a gas discharge tube (GDT). An increase in the GDT volume from 157 to 314 cm<sup>3</sup> at a constant pumping power of 1200 W makes it possible to double the output power and laser efficiency. An average radiation power of 2.5 W was attained for the first time in 1.76 μm line; a maximal efficiency of 0.3% was attained at a pump power of 500 W. After 100 hours of operation, the energy characteristics of the Eu + Ne laser with the active zone of 314 cm<sup>3</sup> in volume show good repeatability, which allows us to conclude a possibility of further increasing the energy characteristics and lifetime of this laser. Our results can be useful in microprocessing of materials and in active optical systems for visualizing fast processes.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 4","pages":"567 - 571"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
IR lasers are widely used in various fields of science and technology. In this regard, expanding the spectral range and obtaining effective lasing in the IR is an urgent task. The object of our study is an self-terminating Eu laser radiating at a wavelength of 1.76 μm. We study a possibility of increasing the output parameters of this laser by elongating the active zone of a gas discharge tube (GDT). An increase in the GDT volume from 157 to 314 cm3 at a constant pumping power of 1200 W makes it possible to double the output power and laser efficiency. An average radiation power of 2.5 W was attained for the first time in 1.76 μm line; a maximal efficiency of 0.3% was attained at a pump power of 500 W. After 100 hours of operation, the energy characteristics of the Eu + Ne laser with the active zone of 314 cm3 in volume show good repeatability, which allows us to conclude a possibility of further increasing the energy characteristics and lifetime of this laser. Our results can be useful in microprocessing of materials and in active optical systems for visualizing fast processes.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.