Nickolas H. Sotiropoulos, Isaac M. Nault, Adolfo A. Blassino, Michael B. Nicholas
{"title":"Shot Peening-Assisted Cold Spray-Enabling ‘Helium Performance’ with Nitrogen","authors":"Nickolas H. Sotiropoulos, Isaac M. Nault, Adolfo A. Blassino, Michael B. Nicholas","doi":"10.1007/s11666-024-01854-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the effect of an in situ shot peening and cold spraying process for depositing niobium using nitrogen gas was studied and compared to that of traditional niobium sprayed using helium gas. The samples were evaluated using Vickers hardness indentation and defect analysis to compare the mechanical properties and microstructure of the shot-peened samples with that of the helium-sprayed samples. During this study, a mathematical model was proposed to effectively predict the amount of shot peening required to achieve a specific increase in sample hardness. A novel means of using two cold spray systems was also proposed to obtain a better level of control during the shot-peening process. It was found during this study that in situ shot peening can be used to increase the as-sprayed hardness and density of nitrogen-sprayed niobium cold spray deposits to levels comparable to niobium cold sprayed using helium gas. This offers a potential means to transition away from the use of helium gas without sacrificing material properties.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 7","pages":"2262 - 2277"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01854-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the effect of an in situ shot peening and cold spraying process for depositing niobium using nitrogen gas was studied and compared to that of traditional niobium sprayed using helium gas. The samples were evaluated using Vickers hardness indentation and defect analysis to compare the mechanical properties and microstructure of the shot-peened samples with that of the helium-sprayed samples. During this study, a mathematical model was proposed to effectively predict the amount of shot peening required to achieve a specific increase in sample hardness. A novel means of using two cold spray systems was also proposed to obtain a better level of control during the shot-peening process. It was found during this study that in situ shot peening can be used to increase the as-sprayed hardness and density of nitrogen-sprayed niobium cold spray deposits to levels comparable to niobium cold sprayed using helium gas. This offers a potential means to transition away from the use of helium gas without sacrificing material properties.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.