Review of test methods for the micro-pore characteristics of soils

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Environmental Earth Sciences Pub Date : 2024-11-26 DOI:10.1007/s12665-024-11968-6
Yong Chen, Haoran Geng, Yuanyuan He, Yongli Liu
{"title":"Review of test methods for the micro-pore characteristics of soils","authors":"Yong Chen,&nbsp;Haoran Geng,&nbsp;Yuanyuan He,&nbsp;Yongli Liu","doi":"10.1007/s12665-024-11968-6","DOIUrl":null,"url":null,"abstract":"<div><p>Microstructure and pore characteristics of soil determine its physical and mechanical properties such as deformation, strength, and permeability. The accurate characterization of soil microstructure is a crucial prerequisite for understanding soil texture and for the effective characterization of soil properties. This study aimed to evaluate the applicability and limitations of various soil micro-test methods, compare the resolution of different micro-test techniques, and present their results. Several different techniques and methods have been used to analyze soil micropore structures. In terms of micro-visualization, scanning electron microscopy (SEM) and computed tomography (CT) are common imaging methods that can present the microstructure of the soil surface and its interior through optical means. In addition, some methods, such as soil–water retention curve (SWRC), mercury intrusion porosimetry (MIP), gas adsorption (GA), and nuclear magnetic resonance (NMR,) indirectly assess the size-related information of soil pores through the pore characteristics of porous media. The targeted joint application may be selected according to varying objectives—MIP is used to obtain the main structure when studying the overall internal pores, supplemented by CT for three-dimensional remodeling; NMR is used when studying local pore damage to reflect the evolution of pore characteristics related to water storage, supplemented by SEM to support observations of surface or morphological structure damage. Finally, the direction for future development is to process the test results and transform the existing technical equipment.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"83 23","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11968-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microstructure and pore characteristics of soil determine its physical and mechanical properties such as deformation, strength, and permeability. The accurate characterization of soil microstructure is a crucial prerequisite for understanding soil texture and for the effective characterization of soil properties. This study aimed to evaluate the applicability and limitations of various soil micro-test methods, compare the resolution of different micro-test techniques, and present their results. Several different techniques and methods have been used to analyze soil micropore structures. In terms of micro-visualization, scanning electron microscopy (SEM) and computed tomography (CT) are common imaging methods that can present the microstructure of the soil surface and its interior through optical means. In addition, some methods, such as soil–water retention curve (SWRC), mercury intrusion porosimetry (MIP), gas adsorption (GA), and nuclear magnetic resonance (NMR,) indirectly assess the size-related information of soil pores through the pore characteristics of porous media. The targeted joint application may be selected according to varying objectives—MIP is used to obtain the main structure when studying the overall internal pores, supplemented by CT for three-dimensional remodeling; NMR is used when studying local pore damage to reflect the evolution of pore characteristics related to water storage, supplemented by SEM to support observations of surface or morphological structure damage. Finally, the direction for future development is to process the test results and transform the existing technical equipment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土壤微孔特征测试方法综述
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Earth Sciences
Environmental Earth Sciences 环境科学-地球科学综合
CiteScore
5.10
自引率
3.60%
发文量
494
审稿时长
8.3 months
期刊介绍: Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth: Water and soil contamination caused by waste management and disposal practices Environmental problems associated with transportation by land, air, or water Geological processes that may impact biosystems or humans Man-made or naturally occurring geological or hydrological hazards Environmental problems associated with the recovery of materials from the earth Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials Management of environmental data and information in data banks and information systems Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.
期刊最新文献
Characteristics of soil carbon density distribution and influencing factors in typical karst regions of China Stability against toppling of a single rock block resting on an irregular rough base Riverine Cu-distribution in sediments of the Jaba-Kawerong river system 30 years after cease of mining at Panguna/Bougainville Effect of loading rates on mechanical behavior and strain localization characteristics of sandstone Review of test methods for the micro-pore characteristics of soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1