Effects of aggregate crushing and strain rate on fracture in compressive concrete with a DEM-based breakage model

IF 2.4 3区 工程技术 Granular Matter Pub Date : 2024-11-26 DOI:10.1007/s10035-024-01487-3
Michal Nitka, Jacek Tejchman
{"title":"Effects of aggregate crushing and strain rate on fracture in compressive concrete with a DEM-based breakage model","authors":"Michal Nitka,&nbsp;Jacek Tejchman","doi":"10.1007/s10035-024-01487-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study looked at how breakable aggregates affected the mesoscopic dynamic behavior of concrete in the uniaxial compression condition. In-depth dynamic two-dimensional (2D) studies were conducted to examine the impact of aggregate crushing and strain rate on concrete’s dynamic strength and fracture patterns. Using a DEM-based breakage model, concrete was simulated as a four-phase material consisting of aggregate, mortar, ITZs, and macropores. The concrete mesostructure was obtained from laboratory micro-CT tests. Collections of spherical particles were used to imitate aggregate breakage of different sizes and shapes by enabling intra-granular fracturing between them. The mortar was described in terms of unbreakable spheres with different diameters. Compared to the mortar, the aggregate strength was always stronger. A qualitative consistency was achieved between the DEM results and the available experimental data. Concrete’s dynamic compressive strength rose significantly with strain rate and just somewhat with aggregate strength. The fracture process was impacted considerably by aggregate crushing and strain rate. The number of broken contacts grew with an increase in strain rate and a decrease in aggregate strength.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-024-01487-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01487-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study looked at how breakable aggregates affected the mesoscopic dynamic behavior of concrete in the uniaxial compression condition. In-depth dynamic two-dimensional (2D) studies were conducted to examine the impact of aggregate crushing and strain rate on concrete’s dynamic strength and fracture patterns. Using a DEM-based breakage model, concrete was simulated as a four-phase material consisting of aggregate, mortar, ITZs, and macropores. The concrete mesostructure was obtained from laboratory micro-CT tests. Collections of spherical particles were used to imitate aggregate breakage of different sizes and shapes by enabling intra-granular fracturing between them. The mortar was described in terms of unbreakable spheres with different diameters. Compared to the mortar, the aggregate strength was always stronger. A qualitative consistency was achieved between the DEM results and the available experimental data. Concrete’s dynamic compressive strength rose significantly with strain rate and just somewhat with aggregate strength. The fracture process was impacted considerably by aggregate crushing and strain rate. The number of broken contacts grew with an increase in strain rate and a decrease in aggregate strength.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于 DEM 的断裂模型分析骨料破碎和应变率对抗压混凝土断裂的影响
本研究探讨了易碎骨料如何影响混凝土在单轴压缩条件下的中观动态行为。通过深入的二维(2D)动态研究,考察了骨料破碎和应变率对混凝土动态强度和断裂模式的影响。利用基于 DEM 的断裂模型,将混凝土模拟为由骨料、砂浆、ITZ 和大孔隙组成的四相材料。混凝土的中间结构是通过实验室显微 CT 测试获得的。球形颗粒的集合被用来模仿不同大小和形状的骨料破裂,使它们之间产生粒内断裂。砂浆是由不同直径的不可破碎球体组成的。与砂浆相比,骨料强度始终更强。DEM 结果与现有实验数据在质量上保持一致。混凝土的动态抗压强度随应变速率的增加而显著提高,但与骨料强度的关系不大。骨料破碎和应变速率对断裂过程有很大影响。随着应变速率的增加和骨料强度的降低,断裂触点的数量也在增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
期刊最新文献
Research on the development of a monitoring experimental platform for top coal migration trajectory in longwall top coal caving and optimization of coal drawing process Liquefaction mechanisms of sand deposits with silt interlayer The study of motion characteristics of detectors based on magnetic localization technology in a soft granule system Development and performance assessment of a novel mechatronic assisted air pluviation system for reconstitution of cohesionless soils Experimental exploration of geometric cohesion and solid fraction in columns of highly non-convex Platonic polypods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1