Byeong Chan Min, Jung Been Park, Changhoon Choi, Dong-Wan Kim
{"title":"Dynamic construction of a composite solid electrolyte interphase for dendrite-free lithium metal batteries via lithium-antimony self-alloying","authors":"Byeong Chan Min, Jung Been Park, Changhoon Choi, Dong-Wan Kim","doi":"10.1007/s42114-024-01070-7","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium (Li) is considered the most promising anode material for Li metal batteries (LMBs) because of its extraordinarily high theoretical capacity and the lowest electrochemical potential among all potential anode materials. Despite their advantages, Li metal anodes (LMAs) still have several critical shortcomings (such as high reactivity and considerable volume expansion), which result in dendritic Li growth and fatal damage to the natural solid electrolyte interphase (SEI) of LMAs. These issues raise safety concerns and cause poor cycling stability of LMAs owing to their continuous parasitic reactions, which hinder their practical use in LMBs. Herein, by employing dynamic chemical reactions for Li-antimony (Sb) self-alloying and tetrahydrofuran-induced ion-conducting SEI fabrication, an artificial composite SEI is proposed to build a stable and dendrite-free LMA. The smooth and dense surface architecture of the electron-insulating and ion-conductive SEI in the LMA (Li@SbCl<sub>3</sub>-20) not only promotes uniform Li-ion flux and current density but also prevents the direct Li-electrolyte contact, which results in a uniform and dense Li plating morphology underneath the SEI without side reactions. Moreover, symmetric Li@SbCl<sub>3</sub>-20||Li@SbCl<sub>3</sub>-20 cells demonstrate stable cyclability (over 400 h) and rate capability at metabolic current densities. When paired with LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub> or LiFePO<sub>4</sub>, the Li@SbCl<sub>3</sub>-20 full-cells achieved long-term cycling stability and rate performance.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01070-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium (Li) is considered the most promising anode material for Li metal batteries (LMBs) because of its extraordinarily high theoretical capacity and the lowest electrochemical potential among all potential anode materials. Despite their advantages, Li metal anodes (LMAs) still have several critical shortcomings (such as high reactivity and considerable volume expansion), which result in dendritic Li growth and fatal damage to the natural solid electrolyte interphase (SEI) of LMAs. These issues raise safety concerns and cause poor cycling stability of LMAs owing to their continuous parasitic reactions, which hinder their practical use in LMBs. Herein, by employing dynamic chemical reactions for Li-antimony (Sb) self-alloying and tetrahydrofuran-induced ion-conducting SEI fabrication, an artificial composite SEI is proposed to build a stable and dendrite-free LMA. The smooth and dense surface architecture of the electron-insulating and ion-conductive SEI in the LMA (Li@SbCl3-20) not only promotes uniform Li-ion flux and current density but also prevents the direct Li-electrolyte contact, which results in a uniform and dense Li plating morphology underneath the SEI without side reactions. Moreover, symmetric Li@SbCl3-20||Li@SbCl3-20 cells demonstrate stable cyclability (over 400 h) and rate capability at metabolic current densities. When paired with LiNi0.6Co0.2Mn0.2 or LiFePO4, the Li@SbCl3-20 full-cells achieved long-term cycling stability and rate performance.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.