{"title":"A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data","authors":"Yuda Bi, Anees Abrol, Zening Fu, Vince D. Calhoun","doi":"10.1002/hbm.26783","DOIUrl":null,"url":null,"abstract":"<p>Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning-based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross-attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross-attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI-based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high-dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"45 17","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.26783","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.26783","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning-based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross-attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross-attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI-based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high-dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.