Sara M Garza-Aguilar, Perla A Ramos-Parra, Rafael Urrea-López, Wendy J Berdeja-Zamudio, Josefina Lozano-Guajardo, Jorge Benavides-Lozano, Mario Ramírez-Yáñez, Rocío I Díaz de la Garza
{"title":"Folate Biosynthesis is Boosted in Legume Nodules.","authors":"Sara M Garza-Aguilar, Perla A Ramos-Parra, Rafael Urrea-López, Wendy J Berdeja-Zamudio, Josefina Lozano-Guajardo, Jorge Benavides-Lozano, Mario Ramírez-Yáñez, Rocío I Díaz de la Garza","doi":"10.1111/pce.15294","DOIUrl":null,"url":null,"abstract":"<p><p>Symbiotic nitrogen fixation (SNF) profoundly alters plant and bacteroid metabolism; however, SNF impact on folates and one-carbon (1C) metabolism are unknown. To explore this, SNF was induced in Phaseolus Vulgaris with Rhizobium etli. Nodules accumulated the highest folate concentration yet reported in a plant tissue (60 nmol/g fresh weight). Folate upregulation was not exclusive of determinate nodules, moderate to high folate contents were also encounter in Medicago truncatula and sativa. Moreover, folates correlated partial and positively with N<sub>2</sub>-fixation. 1C metabolism-associated amino acids (Ser, Gly, Cys, Thr, and Met) accumulated more in nodules than roots. Subcellular profiling of nodule folates revealed that the cytosol fraction primarily contained 5-methyl-tetrahydrofolate, cofactor for Met synthesis. 10-formyl-tetrahydrofolate, required for purine synthesis, was most abundant in nodule plastids, while bacteroids contained low folate levels. Differential transcriptome analysis from nodule legume studies revealed that only a few biosynthetic folate genes expression was increased in nodules whereas several genes for 1C reactions were upregulated. For the first time folates were detected in the xylem sap, with higher concentrations during SNF. We postulate that folates are needed during SNF to sustain purines, thymidylate, and Met synthesis, during both N<sub>2</sub>-fixation and nodule growth; nodule metabolism is then a 1C-unit sink.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15294","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Symbiotic nitrogen fixation (SNF) profoundly alters plant and bacteroid metabolism; however, SNF impact on folates and one-carbon (1C) metabolism are unknown. To explore this, SNF was induced in Phaseolus Vulgaris with Rhizobium etli. Nodules accumulated the highest folate concentration yet reported in a plant tissue (60 nmol/g fresh weight). Folate upregulation was not exclusive of determinate nodules, moderate to high folate contents were also encounter in Medicago truncatula and sativa. Moreover, folates correlated partial and positively with N2-fixation. 1C metabolism-associated amino acids (Ser, Gly, Cys, Thr, and Met) accumulated more in nodules than roots. Subcellular profiling of nodule folates revealed that the cytosol fraction primarily contained 5-methyl-tetrahydrofolate, cofactor for Met synthesis. 10-formyl-tetrahydrofolate, required for purine synthesis, was most abundant in nodule plastids, while bacteroids contained low folate levels. Differential transcriptome analysis from nodule legume studies revealed that only a few biosynthetic folate genes expression was increased in nodules whereas several genes for 1C reactions were upregulated. For the first time folates were detected in the xylem sap, with higher concentrations during SNF. We postulate that folates are needed during SNF to sustain purines, thymidylate, and Met synthesis, during both N2-fixation and nodule growth; nodule metabolism is then a 1C-unit sink.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.