{"title":"Nuclear Molecular Imaging for Evaluating T Cell Exhaustion.","authors":"Huimin Zhou, Guangfa Bao, Jun Zhao, Xiaohua Zhu","doi":"10.1021/acs.molpharmaceut.4c00970","DOIUrl":null,"url":null,"abstract":"<p><p>T cells are indispensable for the therapeutic efficacy of cancer immunotherapies, including immune checkpoint blockade. However, prolonged antigen exposure also drives T cells into exhaustion, which is characterized by upregulated inhibitory molecules, impaired effector functions, reduced cytotoxicity, altered metabolism, etc. Noninvasive monitoring of T cell exhaustion allows a timely identification of cancer patients that are most likely to benefit from immunotherapies. In this Review, we briefly explain the biological cascades underlying the modulation of inhibitory molecules, present a concise update on the nuclear molecular imaging tracers of T cell exhaustion, and then discuss the potential opportunities for future development.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00970","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
T cells are indispensable for the therapeutic efficacy of cancer immunotherapies, including immune checkpoint blockade. However, prolonged antigen exposure also drives T cells into exhaustion, which is characterized by upregulated inhibitory molecules, impaired effector functions, reduced cytotoxicity, altered metabolism, etc. Noninvasive monitoring of T cell exhaustion allows a timely identification of cancer patients that are most likely to benefit from immunotherapies. In this Review, we briefly explain the biological cascades underlying the modulation of inhibitory molecules, present a concise update on the nuclear molecular imaging tracers of T cell exhaustion, and then discuss the potential opportunities for future development.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.