Corrosion of carbon steel by Pseudomonas stutzeri CQ-Z5 in simulated oilfield water

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioelectrochemistry Pub Date : 2024-11-22 DOI:10.1016/j.bioelechem.2024.108846
Shuang Zhang , Boyu Dong , Dan Zhao , Jiani Yang , Xiufen Sun , Lei Yan
{"title":"Corrosion of carbon steel by Pseudomonas stutzeri CQ-Z5 in simulated oilfield water","authors":"Shuang Zhang ,&nbsp;Boyu Dong ,&nbsp;Dan Zhao ,&nbsp;Jiani Yang ,&nbsp;Xiufen Sun ,&nbsp;Lei Yan","doi":"10.1016/j.bioelechem.2024.108846","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon steel, an important infrastructure material in the petroleum industry, experiences serious damage due to Microbially Influenced Corrosion (MIC) with untold economic impact. <em>Pseudomonas stutzeri</em> CQ-Z5 with solid biofilm formation and organic acid-producing ability was isolated from Changqing oilfield produced water. The corrosion behavior and mechanism of 20<sup>#</sup> carbon steel by <em>P. stutzeri</em> CQ-Z5 were explored in a simulated oilfield product water circulating device. Bacteria inoculation can hasten steel corrosion, the maximum corrosion rate reached 1.84 mm y<sup>−1</sup>. Pitting corrosion on rust layer was observed using SEM, and CLSM monitored the change in biofilm thickness. XRD displayed that oxides were the primary corrosion products, including Fe<sub>2</sub>O<sub>3</sub>, Fe<sub>3</sub>O<sub>4,</sub> and FeOOH. Analysis of contributions of corrosion types indicated that biofilm corrosion contributes 72 % to total corrosion, far higher than those of ion erosion and organic acid decay. Many genes involved in iron metabolism, biofilm synthesis, and organic acid production were annotated in the genome of <em>P. stutzeri</em> CQ-Z5. Accordingly, a hypothetical corrosion mechanism model of <em>P. stutzeri</em> CQ-Z5 for carbon steel involvement of initial ion erosion, then biofilm corrosion and organic acid decay was proposed. The work helped prevent carbon steel corrosion and improve corrosion mitigation strategies.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"162 ","pages":"Article 108846"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424002081","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon steel, an important infrastructure material in the petroleum industry, experiences serious damage due to Microbially Influenced Corrosion (MIC) with untold economic impact. Pseudomonas stutzeri CQ-Z5 with solid biofilm formation and organic acid-producing ability was isolated from Changqing oilfield produced water. The corrosion behavior and mechanism of 20# carbon steel by P. stutzeri CQ-Z5 were explored in a simulated oilfield product water circulating device. Bacteria inoculation can hasten steel corrosion, the maximum corrosion rate reached 1.84 mm y−1. Pitting corrosion on rust layer was observed using SEM, and CLSM monitored the change in biofilm thickness. XRD displayed that oxides were the primary corrosion products, including Fe2O3, Fe3O4, and FeOOH. Analysis of contributions of corrosion types indicated that biofilm corrosion contributes 72 % to total corrosion, far higher than those of ion erosion and organic acid decay. Many genes involved in iron metabolism, biofilm synthesis, and organic acid production were annotated in the genome of P. stutzeri CQ-Z5. Accordingly, a hypothetical corrosion mechanism model of P. stutzeri CQ-Z5 for carbon steel involvement of initial ion erosion, then biofilm corrosion and organic acid decay was proposed. The work helped prevent carbon steel corrosion and improve corrosion mitigation strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟油田水中的 CQ-Z5 Stutzeri 假单胞菌对碳钢的腐蚀。
碳钢是石油工业中重要的基础材料,由于微生物影响腐蚀(MIC)而遭受严重破坏,造成难以估量的经济损失。研究人员从长庆油田采出水中分离出了具有固体生物膜形成和有机酸产生能力的石炭酸假单胞菌 CQ-Z5。在模拟油田采出水循环装置中,探讨了 P. stutzeri CQ-Z5 对 20# 碳钢的腐蚀行为和机理。细菌接种可加速钢的腐蚀,最大腐蚀速率达到 1.84 mm y-1。使用扫描电镜观察了锈层上的点腐蚀,CLSM 监测了生物膜厚度的变化。XRD 显示,氧化物是主要的腐蚀产物,包括 Fe2O3、Fe3O4 和 FeOOH。对腐蚀类型的贡献分析表明,生物膜腐蚀占总腐蚀的 72%,远远高于离子侵蚀和有机酸腐蚀。在 P. stutzeri CQ-Z5 的基因组中注释了许多参与铁代谢、生物膜合成和有机酸产生的基因。据此,提出了一种假设的 P. stutzeri CQ-Z5 对碳钢的腐蚀机制模型,即最初的离子侵蚀,然后是生物膜腐蚀和有机酸衰变。这项工作有助于防止碳钢腐蚀和改进腐蚀缓解策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
期刊最新文献
Label-free determination of glypican-3 using PtPd@H-rGO nanocomposites decorated light-addressable potentiometric sensor Electrochemical immunosensors based on the solubility difference of electroactive probe and the dual signal amplification of nanocarrier plus redox cycling A DNA sensor based on CbAgo effector protein and on a dual electrochemical signal amplification strategy for B19 parvovirus detection Detection of HPV 16 and 18 L1 genes by a nucleic acid amplification-free electrochemical biosensor powered by CRISPR/Cas9 A novel aptamer-based photoelectrochemical sensor for zearalenone detection: Integration of g-C3N4/BiOBr with in situ growth Ag2S quantum dots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1