{"title":"Graphite Phase Carbon Nitride Nanosheets-Based Fluorescent Sensors for Analysis and Detection.","authors":"Yanan Liu, Lina Zou, Huiru Niu, Zheng Li, Huanyu Ren, Xiaojing Zhang, Hao Liao, Zhiren Zhou, Xueqing Zhang, Xiaojing Huang, Hongzhi Pan, Shengzhong Rong, Hongkun Ma","doi":"10.1080/10408347.2024.2431222","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescent sensors reflect information such as the concentration or content of the analysis by interacting with a specific recognition group to change the signal of the fluorophore. It has attracted much attention because of its advantages of high sensitivity, fast detection speed and low cost, and it has become an effective alternative to traditional detection methods. Graphitic phase carbon nitride nanosheets (g-CNNs) are a class of carbon-based fluorescent nanomaterials derived from bulk graphite phase carbon nitride (g-C<sub>3</sub>N<sub>4</sub>), which have attracted much attention from scholars because of their advantages of low cost, simple fabrication, high quantum yield, strong stability and nontoxicity. Functional modified g-CNNs can greatly improve the photocatalytic performance. At present, although there have been some researches on fluorescent sensors based on g-CNNs. Nevertheless, there are few reviews about the g-CNNs-based fluorescent sensors. Therefore, in addition to summarizing the sensing mechanism of fluorescent sensors (such as photoinduced electron transfer, fluorescence resonance energy transfer, and intramolecular charge transfer) and the advantages and disadvantages of common signal substances, this paper focused on the application progress of g-CNNs-based fluorescent sensors in the field of analysis and detection.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-13"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2024.2431222","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorescent sensors reflect information such as the concentration or content of the analysis by interacting with a specific recognition group to change the signal of the fluorophore. It has attracted much attention because of its advantages of high sensitivity, fast detection speed and low cost, and it has become an effective alternative to traditional detection methods. Graphitic phase carbon nitride nanosheets (g-CNNs) are a class of carbon-based fluorescent nanomaterials derived from bulk graphite phase carbon nitride (g-C3N4), which have attracted much attention from scholars because of their advantages of low cost, simple fabrication, high quantum yield, strong stability and nontoxicity. Functional modified g-CNNs can greatly improve the photocatalytic performance. At present, although there have been some researches on fluorescent sensors based on g-CNNs. Nevertheless, there are few reviews about the g-CNNs-based fluorescent sensors. Therefore, in addition to summarizing the sensing mechanism of fluorescent sensors (such as photoinduced electron transfer, fluorescence resonance energy transfer, and intramolecular charge transfer) and the advantages and disadvantages of common signal substances, this paper focused on the application progress of g-CNNs-based fluorescent sensors in the field of analysis and detection.
期刊介绍:
Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area.
This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following:
· chemical analysis;
· instrumentation;
· chemometrics;
· analytical biochemistry;
· medicinal analysis;
· forensics;
· environmental sciences;
· applied physics;
· and material science.